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Abstract
In this paper, we extend Open-set Semantic Segmentation (OSS) into a new image segmentation task called
Generalized Open-set Semantic Segmentation (GOSS). Previously, with well-known OSS, the intelligent agents only detect
unknown regions without further processing, limiting their perception capacity of the environment. It stands to reason that
further analysis of the detected unknown pixels would be beneficial for agents’ decision-making. Therefore, we propose
GOSS, which holistically unifies the abilities of two well-defined segmentation tasks, i.e. OSS and generic segmentation.
Specifically, GOSS classifies pixels as belonging to known classes, and clusters (or groups) of pixels of unknown class are
labelled as such. We propose a metric that balances the pixel classification and clustering aspects to evaluate this newly
expanded task. Moreover, we build benchmark tests on existing datasets and propose neural architectures as baselines. Our
experiments on multiple benchmarks demonstrate the effectiveness of our baselines. Code is made available at https://github.
com/JHome1/GOSS_Segmentor.

Keywords Open-set semantic segmentation · Generic segmentation · Scene understanding

1 Introduction

Image segmentation has significantly progressed in the deep
learning era, especially class-specific semantic segmentation
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(SS) [1–7]. The goal of the SS task is to predict the class
label of each pixel in an image from a set of predefined
object classes. Adjacent pixels naturally belong together to
form a segment when they share the same object category.
Despite the considerable improvement, most SS settings fol-
low a closed-set assumption that training and test data come
from the same set of known object classes [8–11]. However,
this assumption is rarely the case in practice, and it limits the
generalization of segmentation models to unknown classes
which models do not see during training.

Open-set semantic segmentation (OSS) [12–17] has
recently been proposed to relax the above assumption,
which aims to segment an image containing both known
and unknown object classes. Unlike SS, OSS identifies the
unknown region where pixels belong to unknown classes.

Although OSS aims to identify pixels that do not belong
to one of the known classes, it does not provide any further
processingor analysis amongst those identifiedunknownpix-
els. We argue that such a setting of OSS may limit the broad
usage of vision-based intelligent agents when they encounter
unfamiliar scenes where several unknown object classes are
adjacent to each other rather than separated. Consider a sce-
nario where an intelligent agent enters a new scene, as shown
in Fig. 1a. OSS leaves the whole unknown region as a large
segment without further processing (see “black region” in
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Fig. 1 Different tasks of image
segmentation. For a given input
image a that contains both
known (“person”, “dog” and
“vegetation”) and unknown
objects (“sheep”, “rail” and
“grass”), we show: b open-set
semantic segmentation (OSS)
by pixel identification, c generic
segmentation (GS) by pixel
clustering, and d generalized
open-set semantic segmentation
(GOSS)

(a) image

(c) GS predic�on

(b) OSS predic�on

(d) GOSS predic�on

Fig. 1b). Insufficient information provided by the OSS set-
ting might affect the decision-making of intelligent agents.
Hence, we raise fundamental questions: how to improveOSS
to generate richer representations for images in real-world
scenes? Moreover, what is a more expressive and versatile
image segmentation task beyond OSS? These questions are
crucial in real-world applications like autonomous driving
and robotics.

Towards the goal of better handling unknown regions in
an image, inspired by the perception system of humans that
they can jointly recognize the previously known objects and
easily group unknown areas into different segments even
though they do not know the categories of those unknown
objects, this paper studies a new type of image segmentation
task called Generalized Open-set Semantic Segmentation
(GOSS). It aims to classify pixels belonging to known classes
and group the unknown pixels (see Fig. 1d for GOSS pre-
diction). As we can see from Fig. 1d, “unknown rail” (or
“unknown 1”) and “unknown sheep” (or “unknown2”) are
segmented out from “unknown grass” (or “unknown4”).
GOSS takes advantage of generic segmentation (GS), which
groups pixels into segments sharing similarities [18–21, 21–
23]. Compared to OSS, GOSS can detect more “objects”
inside unknown regions. We specify two real-world appli-
cations where GOSS can help. First, again considering the
example in Fig. 1a, self-driving carsmay be assisted in avoid-
ing potential obstacles if “unknown sheep” or “unknown rail”
inside “unknown grass” can be found in the OSS prediction
(see Figure b). Another possible practical example is that new
detected “objects” inside unknown regions of images could
help accelerate the data annotation process, especially when
images from unfamiliar scenes are being labelled.

To enable intelligent agents to perform GOSS, we first
build benchmarks using existing segmentation datasets, i.e.

COCO-Stuff [11] and Cityscapes [9]. We split the full
set of object categories into two sets: known classes and
unknown classes. We keep the semantic annotations of
known categories. For unknown categories, we use con-
nectivity labelling [23] to convert their original semantic
annotations into clustering ground truths. Along with the
available datasets, a valid metric is also required to validate
the quality of both OSS and GS. Although many existing
metrics for segmentation tasks exist, such metrics are lim-
ited to measuring a single setting. In this work, we introduce
a metric, termed GOSS Quality (GQ), which evaluates the
segmentation quality of both known and unknown objects.
Having the datasets and evaluationmetrics at hand,we further
establish a trainable framework, namely, GOSS SegmenTor
(GST). The proposed GST adopts a dual-branch architec-
ture with a shared backbone network. To perform the GOSS
task, one branch conducts pixel classification, and the other
performs pixel clustering. Moreover, to learn more discrimi-
native embeddings and thus better process unknown objects,
we leverage the pixel-wise contrastive learning loss into the
training.

In summary, our contributions are as follows: (1) We
present a new image segmentation task called GOSS,
which jointly classifies known pixels and groups identified
unknown pixels from OSS; (2) we propose the GQ metric
that measures the quality of both pixel classification and
pixel clustering, under open-set settings; (3) according to set-
tings ofGOSS,we build benchmarks by customizing existing
datasets; (4) we show a simple yet effective baseline and its
extended version, GST, to facilitate future research.
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Table 1 Comparisons of
different image segmentation
tasks. Compared to traditional
segmentation tasks, GOSS takes
better care of unknown objects

Task Known classes Unknown classes

Generic segmentation Cluster Cluster

Open-set semantic segmentation Classify Identify

Generalized open-set semantic segmentation Classify Identify & cluster

2 Related work

Image segmentation is one of the most widely explored
tasks in computer vision. Throughout image segmentation
research, novel segmentation tasks have been crucial in
driving research directions and innovations.Weprovide com-
parisons between our new setting and relevant older tasks in
Table 1.

Open-set Semantic Segmentation (OSS). OSS, capable
of identifying unknown objects, has developed significantly
recently. PerformingOSS is essential for intelligent agents as
they work in open-set settings where many objects are never
seen. A natural solution, studied in [12, 24, 25], determines
the unknown regions by directly computing the anomaly
score from logit or confidence vectors provided by the model
classifier. Alternatively, synthesis approaches [13, 26–29]
are proposed to detect unexpected anomalies from recon-
structed images. In addition, the work [14] employs metric
learning to learn more discriminative features and incremen-
tally label novel classes using a human-in-the-loop approach.
Beyond the existing OSS setting, the proposed GOSS per-
formsholistic segmentationvia classifying the knownobjects
and clustering the unknown objects, providing more expres-
sive information about the environment than OSS. With
richer information, GOSS could benefit practical usage in
real-world scenarios.

Generic Segmentation (GS). The task of GS is to find
groups of pixels that “go together” [30]. In the early days
of computer vision, the term “image segmentation” and the
bottom-up general (non-semantic) segmentation share the
same meaning. Recently, it is often called “generic segmen-
tation” [21–23] to distinguish it from other segmentation
tasks. The pipeline of early segmentation methods consists
of first extracting local pixel features such as brightness,
colour, or texture and then clustering these features based
on, e.g. mean shift [19], normalized cuts [18], random walks
[31], graph-based representations [20], or orientedwatershed
transform [21]. Learning-based image segmentationmethods
have now also become popular. DEL [32] learns a feature
embedding corresponding to a similarity measure between
two adjacent superpixels. Saacs et al. [22] propose pixel-
wise representations that reflect how segments are related.
Super-BPD [23] learns super boundary-to-pixel direction
to provide a direction similarity between adjacent pixels.
Comparing the performance of different image segmentation

algorithms, public datasets such as BSDB [21, 33] provide
human-labelled class-agnostic ground truth. However, they
do not provide any semantic information.

Image Segmentation as a subtask. Image segmentation is
often taken as a subtask jointly solved with other vision
problems in a single framework [34–36], [37–42]. Panoptic
segmentation [43–45] has recently become a standard image
segmentation task by unifying semantic and instance seg-
mentation.

3 Format andmetric

3.1 Task format

Here, the task format for GOSS is formulated at a pixel level.
For the i th pixel of an image, the GOSS output is defined
as a pair gossi = (si , gi ), where the classification label si
indicates the pixel’s semantic class and the clustering (or
grouping) label gi represents the cluster id. Suppose that there
are N known semantic classes Lkn ∈ R

N and an unknown
class indicator Luk ∈ R, we have the semantic label set L =
{Lkn, Luk}which is encoded byL := {0, ..., N−1, N }. Each
pixel can be predicted in our formulation as either one of the
known or unknown classes. In the first case, each pixel must
have a semantic label, while the cluster id is unnecessary.
This is due to the fact that once the i th pixel is labelled with
si ∈ Lkn , its corresponding cluster id gi is invalid (which is
denotedbyvoid).When the pixel is predicted as the unknown
class, it canbe clustered to gi .Hence, the i th pixelwith known
classes (or unknown classes) can be assigned with gossi =
(si , void) (or gossi = (N , gi )). In practice, a classification
model can predict si , and gi can be determined after the
unknown pixels are clustered.

3.2 Evaluationmetrics

Appropriate evaluation metrics are fundamental in driving
the popularization of a new image segmentation task [43,
46, 47]. In this subsection, we briefly review some popu-
lar existing metrics for relevant segmentation tasks and then
introduce a metric tailored for the proposed GOSS.

PreviousMetrics.Standardmetrics forOSS include the false
positive rate at 95% true positive rate (FPR at 95% TPR), the
area under the receiver operating characteristics (AUROC)

123



J. Hong et al.

[48, 49], and the area under the precision recall (AUPR)
[50, 51]. Such metrics assess performance based on the over-
lap of anomaly score distributions between the known and
unknown classes. However, they are not suited for evaluating
GOSS since they do not need to classify the input as a known
or unknown class, as GOSS requires each input pixel to be
explicitly classified as belonging to a known or unknown
class. Instead, GOSS requires each input pixel to be explic-
itly classified as belonging to a known or unknown class.
Well-known metrics for GS include the variation of infor-
mation [52], probabilistic rand index [53], F-measure [54],
and segmentation covering [21]. These metrics are initially
proposed to evaluate data clustering or edge detection qual-
ity. As no multi-class semantic labels are considered, they
cannot be directly used to measure the performance of joint
GS and OSS.

GOSS Quality We borrow the idea of the segment matching
from the panoptic quality (PQ) [43] in panoptic segmentation
(PS) and adapt the panoptic quality as GOSS quality to be
suitable for evaluatingGOSS.As shown in Fig. 1d, theGOSS
output can be viewed as a set of predicted segments, which is
similar to the panoptic output of PS. The primary distinction
betweenGOSS and panoptic predictions lies in the capability
of GOSS to predict unknown segments.

We treat the unknown pixels as a new class in addition to
N known classes. Thus, there is a total of N + 1 classes of
segmentation. Utilizing segment matching, a predicted seg-
ment fromGOSS ismatchedwith correspondingground truth
segment when their Intersection over Union (IoU) is higher
than 0.5. As illustrated in Fig. 2, this approach enables the
identification of true positives (TP), false positives (FP), and
false negatives (FN) for the predicted segments generated by
GOSS. We let GQkn be the average GOSS quality over N
known classes. Accordingly, GQuk is the GOSS quality of
the unknown class:

GQkn = 1

N

∑

j∈Lkn

∑
(u,û) ∈TPknj

IoU(u, û)

TPknj + 1
2FP

kn
j + 1

2FN
kn
j

(1)

GQuk =
∑

(u,û)∈TPuk IoU(u, û)

TPuk + 1
2FP

uk + 1
2FN

uk
(2)

where IoU(u, û) calculates the Intersection over Union value
for the predicted segment u and the ground-truth segment û.
Furthermore, TPknj , FPknj , and FNkn

j denote true positives,
false positives, and false negatives for the j th known class,
respectively. Similarly, GQuk is obtained specially for the
unknown class with its true positives TPuk , false positives
FPuk , and false negatives FNuk .

The metrics GQkn and GQuk are computed based on the
GOSS output (see Fig. 1d). The known and unknown seg-
ments on the GOSS prediction are evaluated separately via
GQkn andGQuk .However, a unifiedmetric is required to sim-
plify the evaluation. Thus, we define a metric GOSS Quality
(GQ) as:

GQ = λ · GQkn + (1 − λ) · GQuk (3)

where we set λ as the most natural number, 0.5, throughout
the paper. If we simply average GQ over N + 1 classes, then
the ratio between known and unknownwould be significantly
biased (N : 1). In Eq. (3), GQ takes care of the known and
unknown segments equally. We also introduce GQclu , which
only assesses the pixel clustering quality regardless of pixel
class (see Fig. 1b). Refer to the supplementary material for
more details of GQclu .

3.3 Challenges

The endeavour of aggregatingpixels in an image into clusters,
as necessitated by GOSS, poses greater challenges compared
to the conventional OSS task. This increased complexity
stems from the clustering of objects belonging to unknown
classes, which substantially heightens the difficulty of the
task.

Fig. 2 Toy model of ground
truth and predicted GOSS of an
image. The predicted segments
for “unknown” are partitioned
into true positives TPuk , false
positives FPuk , and false
negatives FNuk

unknown unknown

sky sky

Tree Tree

bird unknown

catunknown

unknown unknown unknown unknown

Ground-Truth Prediction

TP

TP

FN

FP

TP
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Fig. 3 The framework of the baseline and GOSS Segmentor. a Base-
line. The input image is fed into the encoder for feature extraction.
The dual-branch heads are jointly trained for pixel classification and
clustering. Furthermore, pixel-wise contrastive learning is leveraged to
learn discriminative feature embeddings. The pixel identification mod-

ule is designed to recognize sets of pixels of the unknown class from
the semantic prediction. The final GOSS output is generated by fusing
the identified semantic and grouping predictions. b GOSS Segmentor
(GST). Confidence adjustment and pixel contrastive learning modules
are included

4 Methodology

In order to effectively perform GOSS, we propose a baseline
framework (see Fig. 3a). The baseline is mainly comprised
of five components: the shared encoder, the pixel classifi-
cation branch, the pixel clustering branch, the identification
module, and the fusion module. Then, we extend the base-
line into a more advanced one, GOSS Segmentor (GST), as
shown in Fig. 3b.More details of our designwill be described
next.

4.1 Baseline

GOSS can be modelled as a unified segmentation task incor-
porating pixel classification and clustering in an open-setting
scenario. Given an image Io ∈ R

3×h̄o×ωo , we expect the pro-
posed baseline to generate semantic and grouping predictions
simultaneously. Hence, we adopt a dual-branch architecture,
with one branch for pixel classification and another for pixel
clustering. As shown in Fig. 3a, two branches share the same
encoder as a feature extractor. The branch for pixel classi-
fication computes a prediction map S ∈ R

h̄o×ωo , while the
pixel clustering branch outputs a mask map G ∈ R

h̄o×ωo

which includes the grouped class-agnostic segments. The
unknown regions in S are identified, denoted by Side, which
is further fused with G, obtaining the final GOSS output
Goss ∈ R

2×h̄o×ωo .
The baseline model is jointly trained with two losses: the

classification loss �cla and the clustering loss �clu . The total

loss is �ws = αcla�cla + αclu�clu where αcla and αclu are
positive adjustment weights.

4.1.1 Pixel classification

We train the branch for pixel classification to classify each
pixel as one of N classes where N is the number of prede-
fined known classes. DeepLabV3+ [4], an existing powerful
baseline for semantic segmentation, is chosen as the basic
architecture for this branch. The branch is updated under
�cla which is the cross-entropy loss between the predicted
semantic map S and its ground-truth map.

DeepLabV3+ leverages an encoder–decoder architecture
that takes a bottom-up pathway networkwith features at mul-
tiple spatial resolutions and appends a top-down pathway
with lateral connections. The top-down pathway progres-
sively upsamples features starting from the deepest layer of
the network while concatenating or adding themwith higher-
resolution features from the bottom-up pathway. The Atrous
Spatial Pyramid Pooling (ASPP) layer [3] is employed in the
DeepLabV3+ model to enlarge the receptive field.

4.1.2 Pixel identification

Pixel identification from OSS is executed to identify sets
of pixels of unknown classes from the semantic prediction.
Hereafter, we study several recipes for pixel identifica-
tion with which the identified semantic prediction Side ∈
R
h̄o×ωo is computed after processingS. Commonmetrics like

AUROC and AUPR of OSS assess the distribution overlap
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between known and unknown classes. Still, pixel identifica-
tion is required to state if the input pixel is known or not
clearly. In other words, binary classification is necessary.

N-model In the pixel classification branch it is natural
to design the semantic segmentation model with an N -
dimensional confidence output C ∈ R

N×h̄o×ωo . The N-
model is restricted to recognizing the set of predetermined
known classes. When an unknown region comes up in a
test image, it would be erroneously classified as one of the
known classes. To identify unknown pixels based on outputs
from the N-model, we employ the comparable OSS method,
Maximum Softmax Probability (MSP) [55] or Maximum
Unnormalized Logit (MaxLogit) [12]. Thresholds are used
to classify pixels as belonging to a known or unknown class.
More details can be found in the supplementary material.

N+1-model As opposed to the N-model, the N+1-model
[56, 57] contains the unknown class in the output C ∈
R

(N+1)×h̄o×ωo such that the N+1-model can directly identify
the unknown pixels. During the training stage, the N+1-
model explicitly takes the “unlabelled” pixels (i.e. the “void”
pixels) as the unknown pixels. N+1-model is not valid if no
“void” pixels are provided.

4.1.3 Pixel clustering

The pixel clustering branch is built in parallel with the pixel
classification branch. The goal of this branch is to partition
the whole image into clusters. During training, to gener-
ate the corresponding annotations, we convert the semantic
labelling of the known classes into connectivity labelling
by ignoring the previous semantics of each segment. The
top-performing method, super boundary-to-pixel direction
(Super-BPD) [23] is selected to establish the branch. The
branch is trained in a supervised manner as well. Super-BPD
applies the ground-truth annotation generated by the distance
transform algorithm. Using the Super-BPDmodel, the repre-
sentation of boundary-to-pixel direction (BPD) for each pixel
is learned (�clu = �bpd ). Super-BPDs are extracted based on
the initial BPDs using the component-tree computation, fol-
lowed by graph partitioning to merge super-BPDs into new
segments.

4.1.4 Fusion module

The identification module outputs the identified seman-
tic prediction Side. Based on Side, the grouping output G
becomes Guk ∈ R

h̄o×ωo where the element gi → void if
the corresponding semantic prediction si ∈ [0, ..., N − 1].
Afterward, Side is merged with Guk to form the GOSS
output Goss = [goss1, goss2, ..., gossh̄oωo

], where gossi =
(si , gi ) ∈ [0, ..., N ] × [1, ..., gmax ] ∪ void . For i th pixel
in Goss , gossi = (si , void) if si ∈ [0, 1, ..., N − 1] or

gossi = (N , gi ) if si = N . The prediction Goss can be
viewed as a map that is composed of a set of several seg-
ments (see “GOSS prediction” in Fig. 3).

4.2 GOSS Segmentor

As shown in Fig. 3b, the baseline model is extended to a new
model that we call GOSS Segmentor (GST). Keeping the
original five baseline components, we propose to equip the
baseline with a confidence adjustment module and a con-
trastive learning module.

4.2.1 Confidence adjustment

For the N+1 model, it is hard to accommodate unknown
classes of objects since the model is trained without see-
ing any examples from these classes. Instead of completely
trusting the confidence prediction C, specific to the pixel
identification of the N+1-model, we propose to modify
C using a confidence adjustment. Particularly, for the i th
pixel, its confidence score after softmax, ci = [ckni , cuki ] ∈
R

N+1, is re-scaled as [ckni , βukcuki ] where βuk ∈ (1,+∞)

is the scale coefficient of the confidence of the unknown
class.

4.2.2 Pixel contrastive learning

In order to learn more discriminative representations for
a better GOSS performance, inspired by [58], we adopt a
pixel-wise contrastive learning algorithm where we contrast
embeddings with different semantic labels.We have i th pixel
embedding ei ∈ R

cn in the feature map E ∈ R
cn×h̄o×ωo

where cn, h̄o, and ωo are the channel number, height, and
width of the feature map. For ei , the positive pixel embed-
dings e+

i have the same ground truth label to ei in the same
feature map, while the negative pixel embeddings e−

i have
different ground truth from ei . The pixel to pixel contrastive
loss [58, 59] is then defined as:

�pc,i = 1

|Npst,i |
∑

i+∈Npst,i

− log
exp(ei · e+

i /τ)

exp(ei · e+
i /τ) + ∑

i−∈Nneg,i
exp(ei · e−

i /τ)

(4)

where Npst,i and Nneg,i are positive and negative embedding
sets for pixel embedding ei . τ is the temperature parameter.
We employ the semi-hard example sampling strategy from
[58] to construct the positive and negative sample sets. Before
the �pc is calculated, we downscale the ground-truth map to
make it have the same size as the feature map E.

123



Towards generalized open-set...

The total loss �ws of GST is obtained by merging the
pixel contrastive loss �pc with the classification loss �cla and
clustering loss �clu as follows: �ws = αcla�cla + αclu�clu +
αpc�pc, where αpc is a positive adjustment weight for �pc.
Contrastive learning aims to make the representations of pix-
els in the latent space closer when they belong to the same
class and farther apart when they belong to different classes.
This metric learning technique has been widely used in seg-
mentation tasks, with many existing works reporting better
empirical results [60–63]. In GOSS, we apply contrastive
learning to train our model, with the aim of generating more
representative embeddings for open-set evaluation.

5 Benchmark

Most datasets for OSS, like StreetHazards [12] and Road
Anomaly [13], present separate unknownobjects in an image.
Ensuring that objects of unknown classes naturally appear
together (are adjacent) in the image, in this work, we split
the full set of labelling categories into known and unknown
classes using a proper ratio.We simulate the training and test-
ing of GOSS using existing semantic segmentation datasets,
i.e. COCO-Stuff [11], and Cityscapes [9]. Note that group-
ing labels of unknown segments are derived from their initial
ground-truth semantic labels before the split. Following [23],
we convert the original semantic labelling of unknown areas
to GS ground truths using connectivity labelling.

5.1 COCO-Stuff-GOSS

COCO-Stuff [11] augments the popular COCO [64] dataset
with stuff classes as well as dense-pixel annotations. It has a
large-scale semantic multi-class setting containing both the
“things” and “stuff” classes. On COCO-Stuff, around 94%
of the pixels are labelled with one semantic category, and
the remaining are “unlabelled” pixels.We customize COCO-
Stuff, creating a new benchmark namedCOCO-Stuff-GOSS.
We strictly divide existing specific classes of COCO-Stuff
into knownandunknownclasses. Training and testing images
are selected from “train2017” and “val2017”. Those cate-
gories which have been defined as unknown categories will
not be represented in the training examples. Every selected
testing example is composed of objects from the set of known
categories and the set of unknown categories (or from only
unknown categories). The statistics of the benchmark on dif-
ferent splits are shown in Table 2.

VOC Split The “VOC Split” is a common category split [65–
68] that provides 20 “thing” classes defined in PASCALVOC
[47] as “known thing” classes. The remaining 60 “thing”
classes are chosen as “unknown thing” classes.

Manual Split We divide COCO-Stuff categories according
to how frequently each specific class appears. We count the
number of occurrences of each class and calculate its ratio
over the number of all training images. For example, in the
“Manual-20/60” split, following that at least one and at most
two classes are chosen from each sub-class, we select 20
of the most popular “thing” classes and treat the remaining
“thing” classes as unknown. Besides, all “stuff” classes are
set as known classes.

Random Split We also conduct experiments with a “Ran-
dom Split", where all classes are randomly re-defined into
known and unknown classes regardless of their super-class
and sub-class. The data split of VOC-20/60 and Manual-
20/60 does not include “stuff” categories as unknown classes,
but Random-111/60 ensures that the known (or unknown)
class includes specific classes from both the ‘thing’ and
‘stuff’ super-class. More details can be found in Table 2.

5.2 Cityscapes-GOSS

The Cityscapes [9] dataset consists of 5000 images (2975
train, 500 val, 1525 test) covering urban street scenes in
driving scenarios. Dense pixel annotations of 19 classes are
provided, that is, 8 “thing” and 11 “stuff” classes. As one
goal of the proposed GOSS is to advance self-driving sys-
tems, we construct the Cityscapes-GOSS Benchmark. We
divide the categories under the “manual split”. As opposed
to theCOCO-Stuff-GOSSBenchmark, all images, regardless
of containing unknown categories or not, are kept. We con-
sider pixels from unknown classes as “void” pixels. Table 2
presents more details.

Manual Split We present two versions of the Cityscapes-
GOSS Benchmark. Following the split in [14], we build the
first version, “Manual-16/3”, which includes “car”, “truck”,
and “bus” as the “unknown thing”. Based on the first version,
we additionally make “building”, “traffic sign”, and “vege-
tation” as “unknown stuff” to produce a more challenging
version, “Manual-13/6”.

6 Experiment

Experimental results are presented in this section to demon-
strate the rationality and effectiveness of GOSS. Using the
baseline and proposed GST, we perform our task on COCO-
Stuff-GOSS and Cityscapes-GOSS. The performance is
mainly measured via the metric GQ.

6.1 Implementation

For all models, ResNet-50 [69] pre-trained on ImageNet [70]
is utilized as the encoder backbone.Allmodels are trained for
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60K/40K iterationswith a batch size of 10/2 onCOCO-Stuff-
GOSS/Cityscapes-GOSS. The “poly” learning rate policy
[71] is applied with the initial learning rate being set to 5e−5.
GSTmodels are updated usingAdamoptimization [72]with-
out weight decay. The weights αcla , αclu , and αpc are 1.0,
1e−4, and 1e−1. The thresholds in the identification module
and the scale βuk (for +CA) are set to 0.5 (0.75 for Cityscape-
GOSS) and 5.0, respectively. Our models are implemented
in PyTorch [73]. We note that the N+1-model cannot be used
for the Cityscape-GOSS dataset. As we consider labels of
unknown classes to be “void” instead of directly filtering out
the image, the entropy of void pixels is not allowed to be
added to the loss.

6.2 Results

The results of GOSS on COCO-Stuff-GOSS and Cityscapes-
GOSS using various identification methods are reported in
Tables 3 and 4, respectively. In addition to GOSS quality,
we also provide metrics for OSS (AUROC and AURP) and
GS (mIoU and GQclu) tasks to show that the models perform
reasonably on these relevant older tasks.

For COCO-Stuff-GOSS in Table 3, GST becomes the
best-performing model. For example, on the “Manual-
20/60 split”, GST attains 9.15% GQ, outperforming the
N-model+MSP by a healthy margin of nearly 1.45%. Com-
pared to other baselines, the pixel contrastive learning
module assistsGST to better discriminate between the known
pixels and the unknown pixels in most cases (see “OSSMet-
ric” in Table 3). Moreover, it boosts the clustering accuracy
in GS. One of the baseline models, N-model+MaxLogit with
using threshold, sacrifices much of GQkn , but it achieves a
highGQuk . As expected,MaxLogit identifies more unknown
areas. However, it does not simultaneously maintain the
pixel classification accuracy [24]. For Cityscapes-GOSS in
Table 4, we find a similar performance ranking to COCO-
Stuff-GOSS in Table 3. For DML [14], except for the case
on COCO-Stuff-GOSS of “VOC-20/60 split”, it wins MSP
and MaxLogit on the other benchmarks.

Several examples from the built benchmark are visual-
ized in Fig. 4 to illustrate the GOSS setting better. Taking
one example from Fig. 4 (2nd-row figure), GOSS accurately
segments out “unknown dogs” from “unknown grass” (see
Fig. 4f). Compared to the prediction of OSS in Fig. 4c, GOSS
can provide richer information for intelligent agents to make
decisions. With GOSS prediction, robots may avoid the
obstacle (“unknown dogs”) when they enter an unfamiliar
scene (“unknown grass”). In terms of the GST model, we
observe from Fig. 4 that the confidence adjustment mod-
ule of GST effectively helps the N+1-model to detect more
unknown regions (see Fig. 4b and c).
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Table 4 GOSS results of GST
(N-model+CL) on
Cityscapes-GOSS under
“Manual-16/3” and
“Manual-13/6” splits

Data Split Identification method Clusteringmethod GOSS Metric
GQkn ↑ GQuk ↑ GQ ↑

Manual-16/3 N-model+MSP [55] Super-BPD 12.1 1.1 6.60

N-model+Maxlogit [12] 6.2 1.7 3.92

N-model+DML [14] 12.3 1.1 6.74

GST (ours) 13.4 1.1 7.31

Manual-13/6 N-model+MSP [55] Super-BPD 7.4 0.1 3.80

N-model+Maxlogit [12] 3.4 0.6 2.01

N-model+DML [14] 7.5 0.2 3.87

GST (ours) 8.3 0.2 4.26

“CL” is cross-pixel contrastive learning. The best results of GQ are in bold

(a) image (c) open-set seman�c predic�on 
from GST

(d) grouping predic�on
from GST

(f) GOSS predic�on
from GST

(b) open-set seman�c predic�on 
from N+1-model (g) GOSS ground truth (e) GOSS predic�on 

from N+1-model

(g) GOSS ground truth (e) GOSS predic�on 
from N+1-model

(f) GOSS predic�on
from GST

Zoom-in Images

(g) GOSS ground truth (e) GOSS predic�on 
from N+1-model

(f) GOSS predic�on
from GST

Fig. 4 Visualized segmentation results from GST (N+1-
model+CA+CL) on COCO-Stuff-GOSS. The GOSS prediction (f)
merges the OSS prediction (c) and the grouping prediction (d). Hence,
within GOSS prediction (f), “objects” inside identified unknown

regions can be segmented out. For example, unknown objects, “paper”
in the 1st row, “dog/grass” in the 2nd row, and “bottle” in the 3rd row
are correctly outlined even though their classes are not known. We also
have some zoom-in images to show the effectiveness of the GST

6.3 Analysis

Number of Unknown Classes. The increased number of
unknown classes makes the GOSS performance significantly
drop as we observe the performance of “Manual-16/3” and
“Manual-13/6” in Cityscapes GOSS (see Table 4).

Training Strategy. For all models in Table 3 and 4, the
pixel classification branch and the pixel clustering branch
are trained in a single unified architecture. Here, we study
a different training strategy, “Separate,” where two branches
are trained separately, and their outputs are then merged. We
find that the performances of “Separate” and our “Single”

network are close. We finally choose “Single” since it is fast,
light, and easy to implement.

Clustering Method. We train the pixel clustering branch
for grouping unknown areas in an unsupervised manner by
applying differentiable feature clustering (DFC) loss [74].
DFC in an unsupervised setting has a basic clustering per-
formance, but it is worse than Super-BPD in a supervised
setting.

Component Effect. Here, we discuss the effects of each
model component (“CA” or “CL”). The results on COCO-
Stuff-GOSS under the “Manual-20/60” split are shown in

123



Towards generalized open-set...

Table 5 Ablation study on COCO-Stuff-GOSS under “Random-111/60” split: training strategy. Two strategies are compared

Data split Identification method Clustering method Strategy GOSS Metric

GQkn ↑ GQuk ↑ GQ ↑
Random-111/60 N-model+MSP [55] Super-BPD Single 16.6 4.1 10.36

N-model+Maxlogit [12] 3.7 8.7 6.22

N-model+MSP [55] Separate 16.4 4.2 10.17

N-model+Maxlogit [12] 3.4 8.9 6.14

Table 6 Ablation study on COCO-Stuff-GOSS under “Random-111/60” split: clustering method

Data Split Identification method Clustering method GS Metric GOSS Metric

mIoU ↑ GQclu ↑ GQkn ↑ GQuk ↑ GQ ↑
Random-111/60 N-model+MSP [55] Super-BPD 12.6 27.9 16.6 4.1 10.36

N-model+Maxlogit [12] 12.6 27.9 3.7 8.7 6.22

N-model+MSP [55] DFC 4.8 4.7 16.8 1.8 9.31

N-model+Maxlogit [12] 4.8 4.7 3.7 3.6 3.69

Two clustering models of GST, super-BPD in a supervised setting and DFC [74] in an unsupervised setting are compared

Table 7 GOSS results of GST
(N+1-model+CA+CL) on
COCO-Stuff-GOSS under
“Manual-20/60” split. “CA” is
the confidence adjustment, and
“CL” is the cross-pixel
contrastive learning

Data split Identification method Clustering method GOSS metric

GQkn ↑ GQuk ↑ GQ ↑
Manual-20/60 N+1-model Super-BPD 13.1 2.2 7.62

N+1-model+CA 14.0 2.5 8.24

N+1-model+CL 14.1 3.5 8.82

GST (Ours) 14.3 3.9 9.15

The best results of GQ are in bold

Table 7, which indicates “CA” or “CL” can solely boost the
performance by a certain margin.

Challenging Task. The results in Table 3 and 4 verify
that GOSS is a very challenging task, despite our baseline
framework relying on strong backbones and a reasonable
architecture. The first main reason is that it is non-trivial to
perform accurate pixel identification under the open-set set-
ting. For example, “unknown laptop” has been misclassified
as “known tv” in the 1st-row figure in Fig. 4. Furthermore,
the clustering branch suffers a performance drop when the
model encounters the unfamiliar appearances of objects from
unknown categories at test time. There is significant room for
future improvement on the task of GOSS.

7 Conclusion

The improved setting referred to as GOSS is introduced in
this paper. We aim to build upon the well-defined OSS to
generate more comprehensive predictions. The task is to
semantically classify pixels as one of the known classes or
an unknown class and cluster the detected unknown pix-

els. With more extracted information inside the unknown
region, GOSS might benefit intelligent agents in their
decision-making process. Specific to the new setting, a
metric, two benchmarks, and a corresponding baseline
model are presented. In future works, the concept of GOSS
can be further extended to include instance segmentation,
image co-segmentation, video segmentation, point cloud
segmentation, etc. We hope this work may provide a new
alternative to a more comprehensive pixel-level scene under-
standing.
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