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Abstract—This paper generalizes the Attention in Attention (AiA) mechanism, in P. Fang et al., 2019 by employing explicit mapping in

reproducing kernel Hilbert spaces to generate attention values of the input feature map. The AiA mechanism models the capacity of

building inter-dependencies among the local and global features by the interaction of inner and outer attention modules. Besides a

vanilla AiA module, termed linear attention with AiA, two non-linear counterparts, namely, second-order polynomial attention and

Gaussian attention, are also proposed to utilize the non-linear properties of the input features explicitly, via the second-order polynomial

kernel and Gaussian kernel approximation. The deep convolutional neural network, equipped with the proposed AiA blocks, is referred

to as Attention in Attention Network (AiA-Net). The AiA-Net learns to extract a discriminative pedestrian representation, which

combines complementary person appearance and corresponding part features. Extensive ablation studies verify the effectiveness of

the AiA mechanism and the use of non-linear features hidden in the feature map for attention design. Furthermore, our approach

outperforms current state-of-the-art by a considerable margin across a number of benchmarks. In addition, state-of-the-art

performance is also achieved in the video person retrieval task with the assistance of the proposed AiA blocks.

Index Terms—Attention in attention mechanism, person retrieval, pedestrian representation, convolutional neural network, second-order

polynomial kernel, Gaussian kernel

Ç

1 INTRODUCTION

PERSON retrieval, also known as person re-identification
(re-ID), has attracted an increasing amount of interests

in the Computer Vision (CV) community due to its chal-
lenging nature and industrial prospects. The task of a per-
son retrieval machine can be characterized as follows: given
an image of a specific person, the machine should retrieve
all images with the same identity, from a gallery.

There are quite a few factors that can lead to an unreli-
able person retrieval system, making the re-ID task daunt-
ing and challenging. For example, misalignment caused by
spatial nuances in the person bounding box (e.g., move-
ments of body parts) can negatively affect a re-ID system [2].
That is, the location of the person’s body, and its parts, with
respect to a reference frame, can be easily displaced due to
the change in body orientation, pose, clothing, etc. This, in
turn, causes mismatching of features during training and

testing, leading to inaccurate re-identification. Much effort
has been made into studying and addressing these difficul-
ties [3], [4], [5], [6]. However, it still remains an open prob-
lem and calls for further study to learn a robust and
discriminative representation of the person(s).

In general, solutions to address the misalignment within
a person bounding box can be broadly categorized into
human pose-based, human attributes-based as well as visual
attention-based methods. In recent years, several attempts
that rely on human pose estimation have been undertaken
to address this in [2], [6], [7]. These algorithms employ addi-
tional estimator networks that provide the baseline-network
with complementary cues to learn a superior embedding
space, thereby outperforming the baseline-network. Other
solutions benefit from person attributes [8], [9], [10], that are
invariant to variations in human pose, light illumination,
background clutter, spatial misalignment, etc. Such solu-
tions aim at learning a robust person representation as
described by the human attributes. Recently, visual atten-
tion-based solutions have received an overwhelming inter-
est in the re-ID task, since it outperforms the pose-based/
attribute-based models without the need of any additional
pose detector or attribute estimator network.

The attention-based models, inspired by the human
visual and attentive sensing processes, aim to localize the
discriminative regions within a person bounding box [11],
[12], [13]. The inherent attention module (e.g., hard atten-
tion [11] or soft attention [14]) is designed to automatically
select the informative parts of an image, and is trained in a
weakly-supervised manner (i.e., no explicit labeling infor-
mation is given to identify the areas to attend). In our pre-
liminary study [1], we proposed the Attention in Attention
(AiA) mechanism to model the explicit interaction between
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global and local features of the feature map, and used a
bilinear mapping [15] that benefits from the second-order
statistics to generate the attention values. In this paper, we
aim to generalize the AiA mechanism by making use of
higher-order statistics, explicitly encoded by non-linear ker-
nel mappings within the AiA framework, to generate the
attention map.

Designing non-linear embeddings (e.g., feature space of
kernel machines) by making use of the geometry of Repro-
ducing Kernel Hilbert Spaces (RKHS) dates back to the cele-
brated work of Vapnik [16]. The machinery of RKHS is rich
enough to even handle infinite-dimensional representations
(through the use of the well-known kernel trick). Also,
recent studies show that kernel methods along deep neural
networks (DNNs) would help to attain rich models [17],
[18], [19], [20]. This inspires us to benefit from the theory of
RKHS and its approximations [21], [22] to design attention
modules for DNNs. To the best of our knowledge, this is the
first attempt where an attention mechanism is implemented
from a RKHS perspective.

This paper generalizes the AiA framework by employing
explicit non-linear mappings in RKHS to generate attention
value(s). The AiA framework consists of an outer attention
block that encompasses an inner attention block such that
the inner block is tasked to determine the discriminative
regions of the feature map where the outer attention block
should focus (See Fig. 1 for a conceptual diagram for AiA
structure). Therefore, the AiA block models channel-wise
inter-dependencies between the global and local features,
while preserving the spatial structural information of the
input feature map, in a unified block. Besides a vanilla AiA
block, which only exploits linear features of its input feature
map, we further propose and develop two non-linear ver-
sions of AiA, with each respectively using the second-order
polynomial and Gaussian kernels of the feature map along
the channels. The intuition behind adopting the features in
RKHSs is that such features can benefit from the highly dis-
criminative capacity of high- or infinite-dimensional spaces,

thereby helping the attention block to focus on more dis-
criminative areas within the feature maps. Even though
functions in RKHS can approximate any function, the oper-
ational capacity is limited due to computationally expensive
kernel operations on the whole training data [21], [22]. In
this paper, we further propose to alleviate these constraints
by relying on advanced kernel estimation techniques. More
specifically, the second-order polynomial kernel is modeled
by a bilinear mapping [15], while the Gaussian kernel is esti-
mated by random Fourier features [22]. By such transforma-
tions, learnable parameters are avoided in the non-linear
transformation, leading to being optimized easily. We fur-
ther propose a computationally efficient version of the
attention block without the use of the inner attention block.
Table 1 summarizes the proposed attention modules.

The contribution of our work can be summarized as fol-
lows: (a) We formulate a generalized Attention in Attention
(AiA) mechanism, where the attention map is generated by
the interaction between the inner and outer attention mod-
ules. This indeed results in modeling inter-dependencies
between global and local features of its input feature map,
while maintaining the spatial structural information. (b) We
further develop kernelized versions of the AiA block,
namely, second-order polynomial attention (SoP-attention) and
Gaussian attention (Gau-attention), by estimating the second-
order polynomial and Gaussian features of the input feature
map respectively. Furthermore, we employ advanced kernel
estimation techniques to reduce the computational cost of
the kernel matrix. (c) We propose a novel deep architecture
using the AiA block, creating our Attention in Attention Net-
work (AiA-Net), for the task of person retrieval. This AiA-
Net extracts complementary person appearance and part
features for discriminative person representation learning.
(d) Extensive experiments performed on large scale standard
benchmark datasets including CUHK03 [23], Market-
1501 [24],DukeMTMC-reID [25] andMSMT17 [26], as well as
a small scale benchmark dataset (e.g., CHUK01 [27]), show
that our approach outperforms the current state-of-the-art
methods by a considerable margin in terms of mAP and R-1
metrics. Meanwhile, we also conduct extensive ablation
studies that verify the superiority of the AiAmechanism and
the utility of the non-linear features. (e) In the video person
retrieval setting, our deep network (e.g., AiA-Net-V) also
achieves state-of-the-art results on the popular video bench-
mark dataset, MARS [28]. Additionally, we find an interest-
ing observation that the Gau-attention mechanism is
empirically superior to the SoP-attention, in terms of accu-
racy, computational cost as well as number of parameters.

Fig. 1. The structure of Linear attention with AiA. ’ð�Þ, fð�Þ and $ð�Þ are
embedding functions. GAP indicates global average pooling. � indicates
element-wise multiplication.

TABLE 1
Summary of the Proposed Attention Modules

Here, we use feature vectors (e.g., xx; yy 2 Rc) in the attention formulation instead of the tensor shaped feature map, for the purpose of simplicity. zz denotes the
attention mask, generated by the outer attention, xx and$ðmmÞ denote the associated channel feature and inner attention mask. Refer to Section 3 for more detail.

FANG ETAL.: ATTENTION IN ATTENTION NETWORKS FOR PERSON RETRIEVAL 4627

Authorized licensed use limited to: Southeast University. Downloaded on March 18,2023 at 13:47:43 UTC from IEEE Xplore.  Restrictions apply. 



For instance, on the CUHK03 dataset, the mAP/R-1 of AiA-
Net with Gau-attention is 77.6/80.6 percent as compared to
77.0/79.4 percent for SoP-attention, while the computational
complexity/number of parameters of Gau-attention are
three times smaller than that of SoP-attention (e.g.,
0:044� 109/0:58� 106 versus 0:117� 109/1:79� 106).

2 RELATED WORK

Our work mainly focuses on person re-identification1 and
the associated attention mechanism. Here, we briefly give
an overview of those works. Thereafter, we review the ker-
nel estimation techniques used, namely, the bilinear map-
ping and kernel approximation.

Person Re-Identification. Early works in the field of person
re-ID relied mostly on designing hand-crafted feature repre-
sentations [29] or learning latent spaces [30]. We refer inter-
ested readers to [31] for more details regarding traditional
methods. Convolutional Neural Networks (CNN) are cur-
rently the method of choice for representation learning,
delivering state-of-the-art results in person re-ID. In [30], Yi
et al. proposed a unified framework for feature and similar-
ity learning using Siamese networks [32]. Multi-level simi-
larities are employed in [33] to make more reliable
decisions. Xiao et al. trained a model across multiple data-
sets [34] and used domain guided dropouts to mute
domain-irrelevant neurons to learn robust features. Struc-
tural constraints (e.g., orthogonality, geometry) on the
embedding layer [35], [36] have also been shown to learn
robust person features and achieve superior results on the
person re-ID task. In deep metric learning, some works also
concentrate on developing the ranking loss in formula-
tion [37] or mining strategies [12]. Considering the camera
distribution, the spatial and temporal signal is further
adopted to eliminate the irrelevant, thereby improving the
ranking results [38]. Besides the single image presentation,
video data also introduces temporal cues to encode a com-
pact and robust video presentation of a pedestrian [39], [40].
In the early work of [40], the clip-level feature is fused by
using a simple yet effective temporal pooling technique. A
Recurrent Neural Network (RNN) is further employed to
leverage the temporal information, and fuse the frame-level
features [39]. Temporal attention mechanisms predict the
importance of each frame feature and uses weighted sum to
fuse them [41]

Attention Mechanism. Attention mechanisms, inspired by
the human sensing process, have been studied extensively
in Natural Language Processing [42] and Computer Vision
[14]. Self-attention is first proposed in [42] and achieves a
breakthrough in machine translation, showing its super-
ior performance over the RNN. Thereafter, several visual
applications have incorporated this attention module in
their formulation, e.g., image classification [43], scene seg-
mentation [44], image captioning [45] as well as video per-
son re-ID [41]. On the other hand, channel attention, such as
the Squeeze-and-Excitation block [14], attempts to re-weight
each slice of the feature map, thereby emphasizing the infor-
mative channel features. More discriminative cues are

extracted by incorporating spatial and channel information
from the feature map [46].

In person re-ID, the person misalignment [3] and back-
ground biases [47] obstruct learning of a robust feature
representation. Visual attention mechanisms aim at empha-
sizing informative regions for identification, while depreci-
ating harmful ones (e.g., background and occluded
regions). The spatial transformer network (STN) [48], a
binary hard attention, was used in [49] to localize the latent
body parts of a human. Liu et al. [50] proposed a Compara-
tive Attention Network (CAN), which repeatedly localizes
discriminative parts and compares different local regions of
person pairs. In Harmonious Attention Convolutional Neu-
ral Network (HA-CNN) [11], hard region-level attention
and soft pixel-level attention are learned in a unified atten-
tion block. Wang et al. [12] considered both the channel-
wise and spatial-wise attention in a Fully Attentional Block
(FAB), where the channel information is re-calibrated while
the spatial structural information is also preserved. Besides
aligning the feature maps, Dual ATtention Matching net-
work (DuATM) [51] also calibrates the features by matching
the intra-feature sequence. In [9], the attention learning is
driven by person attribute prediction. In the video person
re-ID task, attention mechanisms have also been employed
in temporal modeling. For example, the attention weights
for each frame is generated by temporal convolution [52].
The recent works continue to mine more spatial and tempo-
ral information via spatial-temporal attention [53].

Bilinear Mapping. Bilinear mappings and models have
been widely considered as a generalization of their linear
counterparts. Some prime examples are bilinear classifiers
[54], bilinear pooling [55] and bilinear CNNs [15] with appli-
cations in visual question answering, fine-grained image rec-
ognition, texture classification to name a few. Related to our
work, the bilinear pooling [55], is first introduced to model
local pairwise feature interactions for fine-grained recogni-
tion applications and its representation power is also
enhanced by normalizing the higher order statistics [56].
Thereafter, Liu et al. [57] proposed a compact form of the
bilinear operation to pool a high-dimensional feature repre-
sentation for the task of person re-ID. In [58], Ustinova et al.
proposed a patch-based multi-regional bilinear pooling to
account for the geometric misalignment problem between
the person bounding boxes. Recently, Suh et al. [3] used a
part-aligned representation to mitigate the misalignment
problem by fusing the appearance and part featuremaps in a
bilinear pooling layer. To avoid a quadratic computational
cost, the bilinear features are estimated by a compact repre-
sentation, e.g., the tensor sketch [55], or the Hadamard prod-
uct of low-rank bilinear pooling [59].

Kernel Approximation. Feature embedding in RKHS has
been commonly used in many machine learning methods,
such as, non-linear SVM, kernel PCA and unsupervised
learning [60]. Nonetheless, training such kernel machines is
N times slower than the vanilla linear machine, where N is
the size of the training data [21]. This results in poor scal-
ability of the non-linear kernel based algorithms as the fea-
ture learning operates on the kernel matrix, leading to the
birth of accelerated kernel machines [21], [22]. One possible
attempt is to approximate the high dimensional features by
explicit mapping in RKHS, which is scalable linearly to the

1. In this paper, we will use the terms “person retrieval”, “person re-
identification” and “person re-ID” interchangeably.
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size of training samples [61]. Maji et al. [62] approximated
the intersection kernel by sparse projection. Shift-invariant
kernels, e.g., Gaussian kernels, Cauchy kernels etc., are esti-
mated by randomly mapping the feature in the Fourier
domain of the associated kernel [22]. Approximation to a
group of additive homogeneous by spectral analysis is stud-
ied by Vedaldi and Zisserman [21], yielding closed-form
solutions.

3 ATTENTION IN ATTENTION

In this section, we will first describe the Attention in Atten-
tion (AiA) framework, which only uses the linear features
of the input feature map in the attention block. This vanilla
module is termed as Linear attention with AiA. Subsequently,
its non-linear counterparts will be developed by making
use of second-order polynomial and Gaussian kernels in the
attention module. Each AiA module will be followed by a
discussion of its simplified version (i.e., the attention w/o
AiA). All proposed attention blocks are summarized in
Table 1.

3.1 Linear Attention

Linear attention (Lin-attention) with AiA refers to the
vanilla attention module under the AiA framework as it
explicitly uses the linear features over the input feature
map. This AiA mechanism models the inter-dependencies
between the local and global features, whilst preserving the
spatial structure of its input feature map. The architecture
of Lin-attention with AiA is shown in Fig. 1.

Let XX 2 Rc�h�w be the input feature map, where c, h and
w stand for the number of channels, height and width
respectively. We denote the local feature at spatial location
ði; jÞ as xxij 2 Rc; i 2 f1; 2; . . . ; hg; j 2 f1; 2; . . . ; wg. The
embedding function, ’ð�Þ, first compresses xx2 from the origi-
nal channel dimension c to �c as follows:

�xx ¼ ’ðxxÞ; (1)

where �xx 2 R�c with �c ¼ c=r. The hyper-parameter r is the
dimensionality reduction factor and its effect is discussed in
Section 5.2.

We note that even though �xx encodes the channel features
(i.e., xx), it doesn’t change the spatial location of body parts
in the feature map. As a result the misalignment issue
within the feature map still persists, which hinders the per-
formance gain by the attention module. To address this
shortcoming, we introduce the concept of “Attention in
Attention”, which aims to adaptively re-weight the channel
feature responses by modeling the inter-dependency
between the global and local features3 (See Fig. 1). We first
model the global feature of the feature map using a Global
Average Pooling (GAP) layer, as follows:

mm ¼ 1

hw

Xhw
i¼1

�xxi; (2)

where mm 2 R�c. The inter-dependency between the embed-
ded global feature mm and each embedded local features �xx is
calculated as follows:

x̂x ¼ $ðmmÞ � fð�xxÞ; (3)

where � denotes the standard Hadamard (element-wise)
multiplication and $ðmmÞ; fð�xxÞ 2 Rc. The embedding func-
tions, $ðmmÞ and fð�xxÞ, not only process the channel feature
responses, but also recover the dimension of the channel
from �c to c (i.e., the channel size of the input xx). Refer to
Fig. 2 for a detailed pictorial representation of the aforemen-
tioned steps. Intuitively,$ðmmÞ acts as an inner attention and
emphasizes the local feature fð�xxÞwhich are more correlated
to the global feature $ðmmÞ via Eq. (3). In Section 4.4, we give
the details of embedding functions (i.e., ’ð�Þ,$ð�Þ and fð�Þ).

The final attention mask of input xx is obtained by bound-
ing x̂x. In this paper, we use Sigmoidð�Þ for this purpose (i.e.,
zz ¼ Sigmoidðx̂xÞ). This resulting vector will act as an outer
attention map, and emphasize/attenuate the significant/
insignificant elements of its input feature vector xx at the
same spatial position as shown below:

xxz ¼ zz� xx: (4)

Remark 1. The operations described by Eqs. (2) and (3)
resemble the Squeeze-and-Excitation (SE) Networks [14].
However, there is an essential difference. The SE Network
first squeezes the information in each channel to a scalar
which is then used to scale all the elements of a channel
uniformly. In contrast, we use the channel attention as an
inner attention module to perform significance weighting
of the attention-dependent feature map (e.g., fð�xxÞ) in AiA
and produce the output feature map (e.g., X̂X). Subse-
quently, our AiA module will further process X̂X to gener-
ate the final attention map (e.g., ZZ). In Figs. 1 and 3, we
further illustrate the difference between the SE block and
the proposed AiA block. Mathematically, for a given fea-
ture maps XX 2 Rc�h�w as input, the output of SE block is
given by

XXz ¼ Sigmoid
�
s
�
�ðGAPðXXÞÞ���XX; (5)

where GAP indicates Global Average Pooling and �ð�Þ,
sð�Þ are the gating functions. In contrast, the output of
our proposed AiA block is formulated as

XXz ¼ Sigmoid
�
f
�
’ðXXÞ��$

�
GAPð’ðXXÞÞ���XX: (6)

By comparing Eqs. (5) and (6), one can observe that if ’ð�Þ
is the identity mapping, fðXXÞ ¼ II, and $ð�Þ ¼ s

�
�ð�Þ�,

then our AiA block realizes the SE block. In other words,
SE block in a special case in our AiA framework. It is
noted II 2 Rc�h�w represents identity tensor here. Since

Fig. 2. Details of the Attention in Attention (AiA) mechanism.

2. The subscripts have been omitted to avoid cluttering of notations.
3. In this paper, the physical meaning of the “global feature” and

“‘local feature” indicates the “person’s appearance feature” and “part
feature”.
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our AiA block also encodes local features (e.g., fð �XXÞ), we
believe our attention maintains the spatial structural
information of the input feature map (e.g., XX), which
essentially improves the performance of the attention
block (Refer the study in Section 5.2).

3.1.1 Linear Attention Without AiA

In case the number of parameters in theAiAmodule becomes
a concern, one can resort to a simplified version which we
denote as Lin-attention without AiA (See Fig. 4). This simplifi-
cation reduces the number of parameters in the Lin-attention
block while still obtaining competitive performance with
respect to the current algorithms for person re-ID tasks.
(Refer to Section 5.2.2 for a comparison against various
benchmarks). Formally, we have

xxz ¼ Sigmoid
�
f
�
’ðxxÞ��� xx: (7)

In the Lin-attention module, the attention map is gener-
ated based on the linear property of the input feature map.
To boost its discriminative capacity, we estimate second-
order polynomial and Gaussian kernels to extract non-linear
features from the input feature map so as to generate the
attention map (or values). The two attention modules are
called second-order polynomial attention andGaussian attention,
respectively (Refer to Fig. 5 for amore detailed description).

3.2 Second-Order Polynomial Attention

In the second-order polynomial attention (SoP-attention),
we make use of the concept of polynomial kernels within

AiA. The architecture of SoP-attention is shown in Fig. 5a.
In SoP-attention, we first obtain

YY ¼ ’ðxxÞ’ðxxÞ> ¼ �xx�xx>

¼
�x1

..

.

�x�c

2
664

3
775 �x1 . . . �x�c½ �

¼
�x2
1 . . . �x1 �x�c

..

. . .
. ..

.

�x�c�x1 . . . �x2
�c

2
664

3
775:

(8)

Since YY is a symmetric matrix, we only consider its upper
triangular elements in the subsequent processing. This sim-
ple step reduces the feature dimensionality from �c2 to
�c � ð�cþ 1Þ=2, thereby resulting in faster and efficient process-
ing in the subsequent modules (Refer to Fig. 6). Specifically,
we perform

~xx ¼ Vec
�
UTriðYY Þ�; (9)

where Vecð�Þ and UTrið�Þ indicate vectorization and the
operator that extracts the upper triangular elements of a
matrix respectively. We summarize the bilinear pooling and
feature rearrangement with: SoPð�xxÞ ¼ Vec

�
UTrið�xx�xx>Þ�.

Given the second order features (e.g., ~xx) and following
the similar aforementioned steps from Eqs. (2) to (4), we
propose

Sigmoid
�
$ðmmÞ � fð~xxÞ

�
; (10)

as the attention map for xx, where mm ¼ 1
hw ð
Phw

i¼1 ~xxiÞ. It is
worth mentioning that mm contains the second order statistical
information (i.e., the vectorized version of the empirical
auto-correlation matrix of �XX) of the input to AiA.

Fig. 3. The structure of Squeeze and Excitation block.

Fig. 4. The structure of Linear attention without AiA.

Fig. 5. The structure of AiA modules employing non-linear features in the feature map. (a): Second-order polynomial attention with AiA, (b): Gaussian
attention with AiA, (c): Second-order polynomial attention without AiA, (d): Gaussian attention without AiA. SoPð�Þ indicates the bilinear pooling and
second order feature rearrangement function.Gauð�Þ indicates the random Fourier feature mapping function.

Fig. 6. Processing of bilinear pooling and second order feature rear-
rangement, denoted by SoPð�Þ. In this operation, we sample the ele-
ments in the upper triangle of YY and vectorize those elements to a new
feature vector ~xx.
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Remark 2. The inner product between two vectors is widely
used as a means of similarity matching. As an insight on
the properties of SoP-attention, consider the inner product
between ~xxi and ~xxj, (i.e., the output of SoPð�Þ function)

~xx>
i ~xxj ¼ SoPð�xxiÞ>SoPð�xxjÞ

¼ Vec
�
UTrið�xxi�xx

>
i Þ
�>

Vec
�
UTrið�xxj�xx

>
j Þ
�

¼
X
u

ð�xiu � �xjuÞ2 þ
X
u

X
s 6¼u

ð�xiu�xis � �xju�xjsÞ: (11)

Here, �xiu is the uth element in vector �xxi. This shows that
with second order pooling, one can introduce higher
order statistics (e.g., second term in Eq. (11)) into making
decisions. This, as we will see empirically, boosts the
accuracy of the model substantially.

SoP-attention also has its simplified counterpart, shown
in Fig. 5c. This formulation approximately halves the num-
ber of parameters of the SoP-attention block, while still
benefiting from second order information (using bilinear
mapping). Here, the attended feature map is calculated as

xxz ¼ Sigmoid
�
f
�
SoPð’ðxxÞÞ��� xx: (12)

3.3 Gaussian Attention

The SoP-attention module requires a large set of parameters
if its input feature map is high-dimensional. To address this
difficulty, we propose the Gaussian attention or Gau-atten-
tion for short (Refer to Fig. 5b for a conceptual diagram).
The Gau-attention makes use of the theory of random Four-
ier features to approximate the infinite dimensional feature
space of a Gaussian kernel. This, as will be shown shortly,
drastically reduces the number of parameters of the model
and required FLOPs (See Table 8 in Section 5).

Given the embedded feature �xx ¼ ’ðxxÞ 2 R�c�h�w, the
function Gauð�xxÞ estimates the Gaussian kernel along each
channel, such that

Kð�xxi; �xxjÞ ¼ e
�k�xxi��xxjk2

2s2 � kð�xxiÞ>kð�xxjÞ; (13)

where kð�Þ is a randomized embedding. The form of kð�Þ for
a Gaussian kernel [22] is shown below as

kð�xxÞ ¼
ffiffiffi
1
c0

q
cosðvv>

1 �xxÞ
..
.

cosðvv>
c0 �xxÞ

sinðvv>
1 �xxÞ
..
.

sinðvv>
c0 �xxÞ

2
666666664

3
777777775
2 R2c0 ; (14)

where the weights (i.e., vvi; i ¼ 1; . . . ; c0) are drawn from the
scaled Fourier transformation of a Gaussian kernel. That is,
we sample from

pðvvÞ ¼ ð2pÞ��c=2exp �kvvk2
2

 !
¼ 1

2p

Z
e�jvv>dde

�kddk2
2s2 ddd:

(15)

The above processing is summarized as the Gauð�Þ func-
tion, with ~xx ¼ Gauð�xxÞ. Given the estimated random features
(i.e., ~xx or kð�xxÞ), Gau-attention generates the attention map
and attends to the input feature map, following Eqs. (10)
and (4) respectively.

Remark 3.Here, we provide a brief analysis how theGauð�Þ
function equips the input feature �xx with the discrimina-
tive power of a Gaussian kernel. Given any two random
feature vectors, ~xxi and ~xxj, their similarity matching is cal-
culated as follows:

E
�
~xx>
i ~xxj

� ¼ E
�
kð�xxiÞ>kð�xxjÞ

�
¼ 1

c0
E
hX

k

�
cosðvv>

k �xxiÞcosðvv>
k �xxjÞ þ sinðvv>

k �xxiÞsinðvv>
k �xxjÞ

�i

¼ E
�
cosðvv>ð�xxi � �xxjÞÞ

� ¼ Z
R�c

pðvvÞejvv>ð�xxi��xxjÞdvv

¼ Kð�xxi; �xxjÞ;
(16)

where the last equality follows from the Bochner theo-
rem [22]. In Section 5, we also empirically verify the
superior performance of Gaussian attention, which not
only saves parameter numbers and computational over-
head significantly, but also outperforms the other two in
the majority of the experiments.

The simplified version of Gau-attention is shown in
Fig. 5d and is denoted as Gaussian attention without AiA,
and its formulation is shown as follows:

xxz ¼ Sigmoid
�
f
�
Gauð’ðxxÞÞ��� xx: (17)

Remark 4. Similar to the Fully Attentional Block (FAB) [12],
both SoP-attention and Gau-attention without AiA mod-
ules maintain the spatial structural information of the
input feature map. However, unlike FAB that considers
only the first order channel information, the aforemen-
tioned attention blocks additionally exploit the non-linear
channel information in the second-order polynomial and
Gaussian kernel spaces, so as to learn a superior discrimi-
native embedding space for the re-ID task.

It is worth mentioning that the proposed attention mod-
ules can be seamlessly placed in any existing convolutional
neural network to enhance the representation learning simi-
lar to what most existing attention blocks do. In Section 5,
we will show the effectiveness of the proposed attention
modules in the person re-ID application.

4 ATTENTION IN ATTENTION NETWORK

In this section, we will first provide an overview of the prob-
lem formulation. Subsequently, it will be followed by a
detailed description of the architecture of the proposed
deep convolutional network, the Attention in Attention Net-
work (AiA-Net).

4.1 Problem Formulation

Let ppi 2 RC�H�W denote an input image, where C, H, and
W represent the number of channels and its height and
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width, respectively. Each image ppi is labeled by its identity,
denoted as yi 2 f1; . . . ; kg, where k represents the total num-
ber of distinct identities of the training data. Thus, the train-
ing set with Ntrain images, can be represented as fppi; yigNtrain

i¼1 .
The person retrieval system, Fðpp; uÞ, parameterized by u,
aims at encoding an image pp to an embedding space, such
that the intra-person variations are minimized while the
inter-person variations are maximized. In our work, the
final embedding space is obtained by concatenating the per-
son-appearance embedding space, i.e. fa ¼ F aðpp; uaÞ, and
the person-part embedding space, i.e. fp ¼ F pðpp; upÞ, such
that Fðpp; uÞ ¼ ½f>a ; f>

p �>.

4.2 Overview

The AiA-Net has two feature extractors, namely, (1) a per-
son-appearance feature extractor (denoted by F a) and (2) a
person part-feature extractor (denoted by F p). The overall
architecture of the AiA-Net is shown in Fig. 7. The person
holistic appearance is encoded by the appearance feature
extractor; while the part feature extractor aims at encoding
the different parts of the person.

The appearance feature extractor consists of 4 convolu-
tional blocks. After each convolutional block, an AiA block
is added to align the feature map and highlight its discrimi-
native regions. The attended feature map encourages the
network to learn a holistic representation (i.e., fa in Fig. 7)
of the person.

Recent studies of the person re-identification task suggest
that an independent modeling of the part regions can
enhance the precision of the overall system [3], [4], [11]. We
also equip the AiA-Net with a parts-based learning ability.
More specifically, we use a simple sub-network as a part
feature extractor, which aims at learning distinct and dis-
criminative parts in the input image. In the part feature

extractor, the aligned feature map XX 2 Rc�h�w is divi-
ded into T non-overlapping regions XXt s.t. XXt 2 Rc�h

T�w; t ¼
1; . . . ; T . Each of the non-overlapped regions is resized
to c� h� w by bilinear interpolation and fed to the tth
stream of the part feature extractor network; which gener-
ates the part-feature embedding. Then, T part features are
concatenated to represent the final person part representa-
tion (i.e., fp in Fig. 7).

Remark 5. Our part feature extractor network is different
from the current part-based solutions [3], [4], [11], [63],
[64]. For example, in [3], the part feature is extracted via a
pose estimation network called OpenPose [65]. Zhao et al.
uses an implicitly defined part detector to align the part
features [64]. In [11], the parts are sampled through a
hard attention network. In [4], [63], the parts are split
evenly in the final feature map. In addition to the struc-
tural differences, each part model within the AiA-Net
works independently from the others as no weights are
shared between them. This, in turn, leads to an increased
diversity of the learned parts, thereby learning a more
generalized discriminative embedding space for retrieval
purposes.

4.3 Multi-Task Training

Multi-Task Training (MTT) has shown to be effective in
modern person re-ID solutions. As the name suggests, MTT
formulates the overall learning procedure as a combination
of several sub-tasks; each having its own importance in the
overall learning mechanism. Yu et al. uses cross-entropy
loss for the classification task and triplet loss for the ranking
task [66]. Mancs combines the triplet loss, focal loss and
cross-entropy loss and learns a superior embedding space
for person re-iD against the baseline algorithms [12]. Recent
works in [67], [68] also show person re-ID can benefit from

Fig. 7. The deep architecture of the proposed feature extractor. AiA-Net has two feature extractors, e.g., the person appearance feature extractor (i.e.,
F a) and the part feature extractor (i.e., F p). fa and fp are concatenated to give the final person representation as f ¼ ½f>a ; f>a �>.
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various regularization, e.g., L2 regularization, angular regu-
larization etc. Following the protocol prescribed in [66], we
train our network for the tasks of ranking and classification.
The ablation study of MTT is reported in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2021.3073512.

Ranking Task. We use the well studied triplet loss for the
ranking task. In a mini-batch, fppigNbatch

i¼1 , a possible triplet
can be denoted as fppi; ppþi ; pp�i g such that the anchor ppi shares
the same identity with the positive sample ppþi and the nega-
tive sample pp�i belongs to a different identity. In the embed-
ding space Fð�Þ, the triplet loss is formulated as follows:

J rank ¼ 1

Ntri

XNtri

i¼1

�
dþi � d�i þ t

�
þ; (18)

where ½��þ ¼ maxð�; 0Þ, Ntri indicates the number of triplets
within one batch, t is a margin. dþi ¼ kFðppiÞ � Fðppþi Þk2, and
d�i ¼ kFðppiÞ � Fðpp�i Þk2. In the triplet mining, for each
anchor, we mine one hard positive and 5 hard negatives,
thus obtaining 5 triplets per anchor sample. This mining
strategy is to avoid collapsing to local minima in the early
stages of optimization [69].

Classification Task. The triplet loss only encodes the inter-
person and intra-person information within a particular
triplet, but does not fully take into account the identity spe-
cific information. To encode the class specific information,
we augment the triplet loss with the cross-entropy based
classification loss J cls, shown below:

J cls ¼ 1

Nbatch

XNbatch

i¼1

�log
�
pðyijFðpiÞÞ

�
; (19)

where pðyijFðpiÞÞ is the predicted probability that pi belongs
to identity yi, and Nbatch is the number of samples in one
mini-batch.

4.4 Implementation Details

Network Architecture. We implemented our AiA-Net model
in the PyTorch [70] deep learning framework. The backbone
network is the GoogLeNet-V1 [71], pretrained on ImageNet
[72] with Batch Normalization [73]. The spatial size of the
input image is fixed to 256� 128. In the appearance feature
extractor, the size of the feature after global average pooling
(GAP) is 1024, which is followed by the 512-dimensional
person appearance embedding layer fa. Another fully con-
nected (FC) layer is connected to predict the person identity
using the person appearance embedding. In the part feature
extractor, we follow the work in [11], and fix T ¼ 4 across
all experiments. The output features of each of the T
streams are concatenated, and is passed through a 512-
dimensional part embedding fp. A FC layer is further con-
nected to predict the person identity using the person part
embedding. During testing, fa and fp are concatenated to
give the final person representation f , where f ¼
½f>a ; f>

a �> 2 R1024. The study of the choice of T and size of
Dim is reported in the supplementary material, available
online.

In the AiA block, the embedding functions ’ð�Þ, fð�Þ and
$ð�Þ are 1� 1 convolutional layers, followed by a batch nor-
malization layer and a nonlinear layer. Here, the nonlinear
layer uses the ReLUð�Þ function. In ’ð�Þ, the dimensionality
reduction factor, r, is set to 8 for the CUHK03 [23] and
CUHK01 [27] datasets, and to 4 for the other datasets. The
dimension of the random feature (i.e. c0) in Eq. (14) is set to
960 for DukeMTMC-reID dataset and to 480 for the other
datasets. The details of the datasets will be presented in
Section 5.1.

Network Training. We use the Adam [74] optimizer with
the default momentum values of (0.9, 0.999) for (b1 and b2).
The weight decay is set to 0.0001. The learning rate is ini-
tialized to 1� 10�3 for CUHK03 [23] and CUHK01 [27], and
5� 10�4 for Market-1501 [24], DukeMTMC-reID [25] and
MSMT17 [26]. The size of the mini-batch (i.e., Nbatch in
Eq. (19)) is set to 64 for all experiments. The learning rate is
decayed by a factor of 0.1 at 150, 200, 250 epochs respec-
tively for all the datasets. In the multi-task training, we pose
the ranking task and classification task in both the appear-
ance and part feature extractors separately; this is inspired
by [4] where supervision on each respective feature extrac-
tor is vital for learning discriminative features. In the triplet
loss, we set the margin (i.e., t in Eq. (18)) to 1.5 for the
CUHK03 and CUHK01 datasets and 1 for the other datasets.
We randomly apply horizontal flip to the input images.
Similar to [75], we also apply random erasing [76] after 50
epochs of training in order to avoid any local optima within
the embedding space. No such augmentations are used dur-
ing the testing phase. We report the performance of the net-
work after training it for 250 epochs. Moreover, it is worth
noting that we do not apply any re-ranking algorithms to
boost the ranking result in the testing phase.

5 EXPERIMENT

5.1 Datasets

In this section, we evaluate our proposed algorithm across
four large scale datasets, i.e., CUHK03 [23],Market-1501 [24],
DukeMTMC-reID [25] and MSMT17 [26], as well as one
small scale dataset, i.e. CUHK01 [27]. In the supplementary,
available online, we will show samples from the aforemen-
tioned datasets.

CUHK03. This dataset consists of 13,164 person images of
1,467 identities, captured by 6 non-overlapping cameras.
Each person is observed by two disjoint camera views.
CUHK03 offers both hand-labeled and deformable part
model (DPM)-detected [77] bounding boxes, and we evalu-
ate our model on both sets. In the CUHK03 dataset, there
are two training/testing protocols. In the vanilla training
protocol, the training set contains 1,367 identities, while the
remaining 100 identities constitute the test set. However in
the new protocol [78], the training set contains 767 identities
and the testing set contains the remaining 700 identities. In
this paper, we adopt both the protocols to verify the effec-
tiveness of the proposed attention blocks.

Market-1501. Market-1501 is one of the most popular re-
ID dataset which consists of 32,668 person images of 1,501
identities observed under a maximum of 6 different cam-
eras. The dataset is split into 12,936 training images of 751
identities and 19,732 testing images of the remaining 750
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identities. Both the training and testing images are detected
using a DPM [77]. In this dataset, we use both the single
query and the multi query setting to evaluate our algorithm.

DukeMTMC-reID. This dataset is collected using 8 differ-
ent cameras and was originally proposed for video-based
person tracking and re-identification. It has 1,404 identities
and includes 16,522 training images of 702 identities, 2,228
query images of 702 identities and 17,661 gallery images. In
this dataset, the person bounding boxes are manually
labeled.

MSMT17. This is the largest person re-ID dataset, consist-
ing of 126,441 person images from 4,101 different identities,
which are detected using Faster R-CNN [79]. This dataset is
collected with using 15 different cameras. The training set
consists of 32,621 images belonging to 1,041 identities,
whereas the test set contains 93,820 images of the remaining
3,060 identities. The test set is further randomly split into
11,659 query images and the remaining 82,161 are used as
gallery images.

CHUK01. This is a small scale person re-ID dataset,
which contains 3,884 images of 971 identities. The person
images are captured by two cameras with each person hav-
ing two images in each camera view. The person bounding
boxes are labeled manually. We adopt the 485/486 training
protocol to evaluate our network.

We use both the mean Average Precision (mAP) and
Cumulative Matching Characteristic (CMC) to evaluate the
model performance. The CMC curve measures the correct
matching rate for a given query image against the gallery
images at various ranks, whereas the mAP measures the
probability of all correct matches in the gallery images for a
given query image, thereby measuring the overall ranking
performance.

5.2 Ablation Study

We first perform experiments to verify the effectiveness of
our proposed AiA mechanism and its variants on CUHK03,
Market-1501, DukeMTMC-reID and MSMT17 under the sin-
gle query setting (i.e., SQ). For the CUHK03 dataset, we use
the most difficult setting, i.e., the new protocol with
detected bounding boxes (i.e., ND).

5.2.1 Effect of the Proposed Feature Extractor

In the field of person retrieval, ResNet-50 [80] and GoogLe-
Net [71] are the most commonly used backbones [3], [12],
[81]. Since we also want the network to own the capacity of
learning part features, the part feature extractor is further
developed. We compare the performance of the ResNet-50
and GoogLeNet, with each equipped with the part feature
extractor. As suggested in Table 2, we could observe that:
(1) the retrieval accuracy increases when the GoogLeNet is
equipped with the part feature extractor, thereby showing
that our design is indeed effective in exploiting the comple-
mentary information between the two feature extractors. (2)
GoogLeNet + part feature extractor is superior to the
ResNet-50 counterpart in both the performance and the net-
work size. Hence, Hence, we use the ImageNet pre-trained
GoogLeNet against the ResNet-50 in our experiments. In
the rest of the paper, the GoogLeNet and part feature extrac-
tor are represented by F a and F p, respectively. The results

under ResNet-50 are reported in the supplementary mate-
rial, available online.

5.2.2 Effect of the Attention in Attention Mechanism

We then evaluate the effectiveness of the proposed AiA
mechanism and use the Linear attention for this study on
the CUHK03 and Market-1501 datasets. In this study, we
compare the Lin-attention without AiA and with AiA
employed in the two feature extractors, e.g., F a and F a þ
F p. The attention block is added after the second convolu-
tional block (i.e., Blk 2 in Fig. 7). In the attention block, we
use the identical dimensionality reduction factor, i.e., r ¼ 4.
The results are listed in Table 3. The table shows that: Addi-
tion of Lin-attention with and without AiA leads to an
increase in the retrieval accuracy across either of the feature
extractors, with the former outperforming the latter in terms
of mAP and R-1 values respectively. This indeed verifies the
design intuition of the AiA mechanism. Further, we replace
the Lin-attention block by other popular attention blocks,
e.g., the Squeeze-and-Excitation (SE) block [14] and the
Non-local (NL) block [43], in the same position of the fea-
ture extractor (i.e., F a and F a þ F p). We set the dimension-
ality reduction factor as 4 in both SE and NL blocks. In this
study, we also compare the parameter numbers and infer-
ence time of attention networks. As suggested in Table 3,
our attention outperforms the other two significantly with-
out bringing any additional heavy computational cost,4

thereby verifying the effectiveness of our proposed AiA
mechanism.

To further verify the superiority of the AiA block, we
compare the learned attention between Lin-attention and its

TABLE 2
Result of Various Backbone Networks on the

CUHK03 and Market-1501 Datasets

PNs: parameter numbers. We use the bold to indicate the best result in each
category.

TABLE 3
Effect of the Attention in Attention Nechanism on the

CUHK03 and Market-1501 Datasets

PNs: parameter numbers; Inf-time: inference time. We use the bold to indicate
best result in each category.

4. In the inference time, we calculate the averaging inference time
per image on NVIDIA GeForce RTX TITAN V
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alternatives (e.g., SE block and NL block) in Fig. 8. We sam-
ple the person images in CUHK03 and Market-1501 data-
sets. Fig. 8 shows that our AiA block either highlights the
informative foreground (denoted by red rectangles) or fil-
ters the non-informative background areas (denoted by
black rectangles), thereby clearly demonstrating the benefits
of the AiA mechanism.

5.2.3 Effect of Employing Non-Linear Features in

Attention

Then, we study the effect of using non-linear features for
attention design on the baseline network F a þ F p. In this
study, we first evaluate that the AiA framework benefits
from the manual non-linear features in RKHSs (i.e., SoP-
attention w/AiA and Gau-attention w/AiA). We also verify
that the manual non-linear features are superior to the
learned non-linear features. We has two settings of learned
non-linear feature: one is naive nonlinear activations and
another one is a stack of nonlinear activations. They are
denoted by non-linear attention V1 and non-linear attention
V2, respectively. Note that both the two versions of the
attention block are incorporated into the AiA framework.

The results on CUHK03 and Market-1501 datasets are
shown in Table 4. It is observed that the non-linear features,
modeled by bilinear mapping and random Fourier features,
has superior performance compared to their linear counter-
part, thereby highlighting the importance of using non-lin-
ear features to locate the highly discriminative regions in
the input feature map. In addition, we also observe that
AiA-Net with Gau-attention has superior performance over
the other two attention variants across both the datasets,
which reveals that Gau-attention can learn more compli-
cated non-linear functions than the other two attention
blocks. Table 4 also reveals that both the versions of learned
non-linearity in AiA achieve similar performance to the
Lin-attention with AiA, while the manual non-linear fea-
tures improves the performance over its linear counterpart,
showing the advantage of manually designed non-linearity.
It might be that the manual ones enjoy high discrimination

power in RKHSs, and are easier to optimize, as compared to
the learned non-linear features. In the supplementary mate-
rial, available online, we also study the effect of the interac-
tive terms in Eq. (8) of SoP-attention block.

5.2.4 Effect of the Dimensionality Reduction Factor

In the section, we study the effect of the reduction factor r in
the embedding function ’ð�Þ on CUHK03 and Market-1501
datasets. All the experiments for this study are conducted
using the SoP-attention with AiA, as r is an important
hyperparameter that directly affects the information pooled
by the bilinear operation. The results and their comparisons,
as shown in Table 5, reveal that: (1) even though r is an
important parameter, which influences the size of the atten-
tion model (i.e., the learnable parameters within $ð�Þ, fð�Þ),
our network has a weak dependency on r as changes in r
lead to minuscule changes in the performance of our net-
work across all datasets. (2) We further observe that while
r ¼ 4 obtains the best results in the large datasets (i.e., Mar-
ket-1501, DukeMTMC-reID and MSMT17), the best value of
r is observed to be 8 when the network is trained on
CUHK03. One plausible explanation is that the network
trained on the large datasets is less prone to over-fitting due
to its larger training set in comparison to CUHK03. The
study on DukeMTMC-reID and MSMT17 datasets is
reported in the supplementary material, available online.

5.2.5 Effect of the Dimensionality in Random Features

In Gauð�Þ, we approximate the channel features in the
Gaussian kernel space via a random Fourier mapping.
Therefore, we study the result of varying the dimensionality
of the random feature (i.e., c0) in this section. Here, we have
set r to 4 in the embedding function ’ð�Þ. The results are

Fig. 8. Comparison of the learned attention on CUHK03 (a) and Market-
1501 (b) datasets. In each dataset, we compare the the feature map
from Lin-attention and its alternatives (e.g., SE block and NL block). In
the heat map, the response increases from blue to red. Best viewed in
color.

TABLE 4
Effect of the Learned Non-Linearity in Attention Mechanism on

the CUHK03 and Market-1501 Datasets

PNs: parameter numbers.

TABLE 5
Effect of the Dimensionality Reduction Factor r in the

Embedding Function ’ð�Þ on the CUHK03
and Market-1501 Datasets

Model CUHK03 @ ND Market-1501 @ SQ

mAP R-1 mAP R-1

F a þ F p 67.8 71.1 85.1 93.8
r ¼ 2 72.3 75.4 87.1 94.9
r ¼ 4 72.6 74.9 87.4 95.1
r ¼ 8 73.2 76.2 87.2 94.5
r ¼ 16 72.5 75.6 86.9 94.4
r ¼ 32 72.1 74.8 86.9 94.1

We use the bold to indicate best the result in each category.
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shown in Table 6. One can observe that: along any dimen-
sion value (i.e., c0), the random Fourier feature helps to
improve retrieval performance of the network. In addition,
the network attains the best performance when c0 ¼ 480 for
both datasets. Further, there is a negligible change in the
performance of our proposed network with changes in c0,
thus clearly demonstrating the weak dependency of AiA-
Net on c0. The study on DukeMTMC-reID and MSMT17
datasets is reported in the supplementary material, avail-
able online, and it can be observed that the network attains
the best performance when c0 ¼960 for DukeMTMC-reID
dataset and c0 ¼480 for MSMT17 dataset.

5.2.6 Effect of the Position of the Attention Block

Table 7 shows the effect of adding the Lin-attention with the
AiA block to different positions along the baseline network
on the CUHK03 and Market-1501 datasets. p1, p2, p3 and p4
indicate the position of the output of Blk 1, Blk 2, Blk 3 and
Blk 4 along the appearance feature extractor respectively
(Refer to Fig. 7). Table 7 shows that: (1) using Lin-attention in
the early stages, i.e. p1, p2, is superior to using it in the later
stages i.e. p3, p4. A similar observation is also made in [43],
where the non-local block enhances the performance of
ResNet [80] in its early stages. (2) Moreover, the performance
of adding Lin-attention in p2 surpasses the performance com-
pared to when it is added in p1. One reasonable explanation
is that the featuremaps at p2 consist of richer channel, as well
as spatial, structural information in comparison to the fea-
ture maps at p1, thereby enabling the network to emphasize
more on the discriminative areas of the images. (3) In the
CUHK03 dataset, which has a smaller training set, the per-
formance of person retrieval degrades when Lin-attention is
inserted at p4. This is observed as the embedding layer of the

Lin-attention module overfits on the training set due to the
high dimensionality of the feature map at p4. (4) It is also
observed that the networkwithmultiple attention blocks can
further bring performance gain. In the rest of the paper, AiA-
Nets indicate plugging multiple attention blocks along with
the baseline network (i.e.,F a þ F p).

5.2.7 Computational Complexity and Model Size

In Section 5.2.3, we have studied the effect of non-linearity
within the AiA module. In this part, we study the block
properties (i.e., computational complexity and module size)
of each of the AiA blocks and the baseline network (i.e.,
F a þ F p). The computational complexity and model size
are measured by the number of floating-point operations
(FLOPs) and parameter numbers (PNs) respectively. This
study is performed on the CUHK03 dataset and the results
are shown in Table 8, along with the parameter settings of
each attention block. The size of the input feature map to
the attention block and input image to baseline network are
set to 480� 16� 8 and 3� 256� 128 respectively. Table 8
depicts that: (1) compared against the baseline network, the
computational complexity and model size of the attention
blocks are insignificant, indicating that the performance
gain significantly relies on the attention mechanism, rather
than increasing the number of parameters. (2) Lin-attention
and Gau-attention are light weight attention blocks, which
can be used in other resource-constrained applications. (3)
Taking into account the results obtained in Table 4, it is
clearly observed that Gau-attention is superior to the SoP-
attention as it results in a large performance gain (See
Table 4), while using significantly fewer number parameters
than the SoP-attention (i.e., only 1=3 of the number of
parameters of SoP-attention). This clearly indicates the hid-
den potential of the use of non-linear features in the Gauss-
ian kernel space in attention design.

5.3 Comparison With State-of-the-Art Methods

To show the superiority of the proposed deep architecture,
we compare the performance of AiA-Nets with the current
state-of-the-art methods across five datasets.

CUHK03. In the CUHK03 dataset, we evaluate our net-
work under all data settings, that is, both labeled and
detected data for the two training set protocols. Tables 9
and 10 show the results for both training protocols. We
observe that our methods outperform the current state-of-
the-art results in vanilla setting and achieve competitive
results in the new setting. In the vanilla training set protocol
(Refer to Table 9), our AiA-Net with Gau-attention
improves over the state-of-the-art result by 0.9/7.6 percent
on mAP for labeled and detected sets, respectively. With

TABLE 6
Effect of the Dimensionality c0 in Random Features on the

CUHK03 and Market-1501 Datasets

Model CUHK03 @ ND Market-1501 @ SQ

mAP R-1 mAP R-1

F a þ F p 67.8 71.1 85.1 93.8
c0 ¼ 120 72.7 75.3 86.7 94.7
c0 ¼ 240 73.1 75.9 87.1 94.8
c0 ¼ 480 74.0 76.8 87.5 95.2
c0 ¼ 960 72.9 75.6 87.3 95.0

We use the bold to indicate the best result in each category.

TABLE 7
Effect of the Position of the AiA Block on the CUHK03

and Market-1501 Datasets

Model CUHK03 @ ND Market-1501 @ SQ

mAP R-1 mAP R-1

F a þ F p 67.8 71.1 85.1 93.8
p1 71.2 73.1 86.5 94.1
p2 72.2 75.1 87.1 94.7
p3 69.1 72.4 85.6 93.9
p4 68.6 70.9 85.1 93.8
p1 - p4 72.8 75.8 87.2 95.0

Here, we use Lin-attention in AiA-Net. We use the bold to indicate the best
result in each category.

TABLE 8
Computational Complexity and Module Size of

Proposed Attention Modules

Lin-attention SoP-attention Gau-attention F a þ F p

Hyper Parameter r ¼ 4 r ¼ 8 r ¼ 4, c0 ¼ 480 -

FLOPs (�109) 0.015 0.117 0.044 2.82

PNs (�106) 0.18 1.79 0.58 30.16

FLOPs: the number of floating-point operations; PNs: number of parameters.
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respect to the R-1 value, our network beats the current state-
of-the-art result by 1.0/0.4 percent across the labeled and
detected sets. In the new training set protocol (Refer to
Table 10), our AiA-Net improves the present state-of-the-art
mAP value by 0.2/0.3 percent and achieves competitive
results on R-1 value. This validates the utility of our design
choices in AiA-Net along with the importance of the various
attention modules to obtain a superior discriminative
embedding for person-retrieval.

Market-1501. We further evaluate our proposed AiA-Net
against the recent state-of-the-art methods on the Market-
1501 in both the single query and multi query settings. The
results are shown in Table 11. In the single query setting,
our method (e.g., AiA-Net w/ Gau-attention) achieves very
competitive results over the RGA and ABD-Net. Moreover,
our AiA-Nets with Lin-attention, SoP-attention and Gau-
attention outperform the present state-of-the-art Mancs by
3.7, 4.0 and 4.3 percent on mAP, and by 0.4, 0.7 and 1.2 per-
cent on R-1, respectively in the multi query setting.

DukeMTMC-reID. The evaluation of our proposed algo-
rithm on DukeMTMC-reID is shown in Table 11. It is obvi-
ous that our AiA-Nets obtain a competitive performance

with respect to mAP and R-1 value. The AiA-Net with Gau-
attention improves over DG-Net by 3.1 percent on mAP and
1.6 percent on Rank-1 accuracy. As for ABD-Net, AiA-Net
with Gau-attention has competitive performance on the R-1
value (88.8 versus 89.0 percent), while achieving the same
performance on mAP value. It is worth mentioning that
ABD-Net uses larger image sizes, which demands more
computation resources.

MSMT17. Table 11 shows the result of our proposed net-
work on the challenging MSMT17 dataset. As observed, our
proposed networks outperform RGA by 1.3 percent on
mAP value and. However, the present state-of-the-art
method (i.e., ABD-Net) beats our network considerably.

CUHK01. Besides learning a discriminative feature repre-
sentation on large scale datasets, we also compare the per-
formance of the AiA-Nets against the state-of-the art
algorithms in the CUHK01 benchmark dataset, thereby
demonstrating the generalization ability of our proposed
networks in learning discriminative representations on a
small scale dataset. Table 12 compares our AiA-Net with
current state-of-the-art methods. We observe that each of
the AiA-Nets outperform the existing state-of-the-art

TABLE 9
Evaluation on the CUHK03-Vanilla Dataset in Both

Labeled and Detected Bounding Box

Model @ Labeled @ Detected

mAP R-1 mAP R-1

DKPM [82] 89.2 91.1 - -
IANet [83] - 92.4 - 90.1
MVP Loss [84] - 93.7 - 91.8
SGGNN [85] 94.3 95.3 - -
MuDeep [13] - 95.8 - 93.7

AiA-Net w/ Lin-attention 94.8 96.1 91.5 93.6
AiA-Net w/ SoP-attention 95.2 96.8 92.1 94.0
AiA-Net w/ Gau-attention 94.9 96.6 92.4 94.1

We use the bold to indicate the best result in each category.

TABLE 10
Evaluation on the CUHK03-New Dataset in Both

Labeled and Detected Bounding Box

Model @ Labeled @ Detected

mAP R-1 mAP R-1

HPM [86] - - 57.5 63.9
Mancs [12] 63.9 69.0 60.5 65.5
OSNet [87] - - 67.8 72.3
Auto-ReID [88] 73.0 77.9 69.3 73.3
RGA [89] 77.4 81.1 74.5 79.6

AiA-Net w/ Lin-attention 76.4 79.1 72.8 75.8
AiA-Net w/ SoP-attention 77.0 79.4 74.2 76.9
AiA-Net w/ Gau-attention 77.6 80.6 74.8 77.8

We use the bold to indicate the best result in each category.

TABLE 11
Evaluation on the Market-1501, DukeMTMC-reID, and MSMT17 Datasets

In the Market-1501 dataset, we apply both single query and multi query to evaluate the model. We use the bold to indicate the best result in each category.
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approach (i.e., PBR) by a large margin. In particular, our
three AiA-Nets with Lin-/Sop-/Gau-attention improve the
state-of-the-art accuracy by 2.1, 2.8 and 3.2 percent on R-1. It
is also noted that PBR is pre-trained on the CHUK03 dataset
and further fine-tuned on the CUHK01 dataset to avoid
over-fitting, while our network is solely trained on the
CUHK01 dataset. This indeed shows that our network is
able to generalize well while trained on a small dataset
from scratch without the need of any such pre-training step.

5.4 Experiments on Video Person Retrieval

In this section, we further evaluate our AiA modules on the
video person retrieval setting on the MARS [28] benchmark
dataset. The network architecture and training details are
given in the supplementarymaterial, available online. Table 13
compares the result of our approach against the current state-
of-the-art algorithms. It clearly shows that our AiA-Net-V
improves the state-of-the-art mAP value by 1.0 percent and
the R-1 value by 0.2 percent. It should be noted that AiA-Net-
V only considers the spatial information in each frame to cal-
culate the attention values and unlike [41], [52], [53], it doesn’t
take into account the modeling of the temporal attention to
fuse the frame features. This improvement clearly shows that
our AiA-Net-V makes better use of spatial structure informa-
tion and attends to the informative areas in each frame.

5.5 Visualization of the Attention in Attention
Module

We visualize the heat maps of the input (i.e., XX) and output
(i.e., XXz) of the Gau-attention block for person images in
both the CUHK03 detected-set in Fig. 9a and Market-1501

dataset in Fig. 9b. In each dataset, from left to right, (1): the
input person image, (2): the input feature map to attention
block, and (3): the masked feature map from attention block.
In (2), we use black rectangles to bound the non-informative
background clutters in images, which will be filtered by
attention block. In (3), we use red rectangles to bound the
discriminative parts of the person body parts, which are fur-
ther emphasized by attention blocks. This visualization
indeed reveals the proposed AiA can focus on the discrimi-
native areas of person images, thereby aligning the feature
maps.

5.6 Discussion

Statistical Significance of the Proposed Method. In Sections 5.2
and 5.3, a thorough study has been studied to verify the
superiority of proposed attention blocks. We further study
their statistical significance using t-test. We adopt the AiA-
Net w/Gau-attention and CUHK03 (See Table 9) in this
study, and we obtain the p-value of 0.0026/0.0033, meaning
that our results are significant (p < 0:05 is significant).
Thus we believe that our AiA-Net is superior to the
MuDeep [13]. We also plug the Gau-attention with AiA to
the ResNet-50 backbone, The results of our AiA read 96.1/
93.9 as compared to 95.8/93.7 of MuDeep, again showing
the superiority of the AiA block. In this study, the p-values
are 0.0003/0.0041, still showing that the results are
significant.

Analysis of the “Attention in Attention” Mechanism and
“Single Attention” Mechanism. In Table 3, we compared AiA
against a simplified version, which still benefits from the
use of an attention block without the use of any inner atten-
tion module (Figs. 4 versus 1 in Section 3). Empirically, we
observe that by incorporating the inner attention module,
improved results can be obtained in both baseline architec-
tures(i.e., F a and F a þF p). To further verify this, we
replace our AiA with the current state-of-the-art attention
modules, namely the Squeeze-and-Excitation block [14] and

TABLE 12
Evaluation on the CUHK01 Dataset

Model R-1 R-5 R-10 R-20

DGD [34] 66.6 - - -
Zhao et al. [64] 75.0 93.5 95.7 97.7
Spindle Net [92] 79.9 94.4 97.1 98.6
PBR [3] 80.7 94.4 97.3 98.6

Baseline (F a þ F p) 82.0 94.4 97.7 99.0
AiA-Net w/ Lin-attention 82.8 94.7 97.7 99.0
AiA-Net w/ SoP-attention 83.5 95.6 97.9 99.3
AiA-Net w/ Gau-attention 83.9 95.5 98.0 99.3

We use the bold to indicate best the result in each category.

TABLE 13
Evaluation on the MARS Dataset in Video

Person Retrieval Setting

Model mAP R-1 R-5 R-10

PBR [3] 72.2 83.0 92.8 95.0
Zhao et al. [10] 78.2 87.0 95.4 -
GLTR [41] 78.4 87.0 95.7 -
COSAM [93] 79.9 84.9 95.5 -
STA [53] 80.8 86.3 95.7 -

Baseline 77.3 83.1 94.2 96.0
AiA-Net-V w/ Lin-attention 81.3 86.4 94.7 96.7
AiA-Net-V w/ SoP-attention 81.8 86.7 95.4 97.0
AiA-Net-V w/ Gau-attention 81.7 87.2 95.6 97.2

We use the bold to indicate the best result in each category.

Fig. 9. Visualization of the attention mechanism in person images, sam-
pled from the CUHK03 dataset (a) and the Market dataset (b). In each
dataset, from left to right, (1) the input person image, (2) the input feature
map to attention and (3) the masked feature map. The heat maps are
generated in AiA-Net with Gau-attention. In the heat map, the response
increases from blue to red. Best viewed in color.

4638 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 9, SEPTEMBER 2022

Authorized licensed use limited to: Southeast University. Downloaded on March 18,2023 at 13:47:43 UTC from IEEE Xplore.  Restrictions apply. 



the Non-local block [43], and evaluate the resulting struc-
ture on the CUHK03 and Market-1501 datasets. The results
on Table 3 and Fig. 8 clearly show the superiority of AiA
over both the Squeeze-and-Excitation and Non-local blocks,
even though only the linear kernel is used in this study.

Analysis of Failure Cases. In this section, we show some
ranking lists of the failure cases (i.e., the identity mismatch
of R-1 retrieved images for certain query images) obtained
by AiA-Net with Gau-attention across the person re-ID
datasets. Fig. 10 shows that the AiA-Net may be affected by
persons with similar distractors, such as similar clothing
and stature (e.g., the first and second ranking lists). Further,
for the DukeMTMC-reID dataset, our network is also
affected (e.g., the third and forth ranking lists) by occlusions
(i.e., bike, car). Nonetheless, taking a closer look at those
failure cases highlighted with red rectangles, they are in fact
perceptually very similar to its respective query image (i.e.,
color of clothes, body orientation etc.). Having said that,
these observations motivate us to further develop more
robust person re-ID algorithms so as to differentiate such
subtle changes successfully.

Generalization of Attention Blocks. To verify the generaliza-
tion of proposed attention blocks, we employ other back-
bones to evaluate the effectiveness of AiA blocks, including
ResNet-50 [80], GoogLeNet-V1 [71], DenseNet [94], Mobile-
Net [95] as well as ShuffleNet [96]. This study is conducted
on CUHK03 dataset. Fig. 11 reveals that our AiA blocks can
consistently bring performance gain across various back-
bones, clearly showing the generalization and superiority of
the AiA block. The study on other datasets is reported in
the supplementary material, available online. We also con-
duct experiments on large-scale image classification to ver-
ify the generalization to other tasks in the supplementary
material, available online.

6 CONCLUSION

In this paper, we generalize the Attention in Attention (AiA)
mechanism for the person retrieval task. This AiA mecha-
nism uses an inner attention, which encodes the global fea-
tures of the input feature map, to re-weight the feature map.
Thereafter, this feature map is further processed by an outer
attention, to generate a well focused attention map. Besides
the linear version of AiA, we propose and develop non-lin-
ear versions of AiA, where the features are approximated
using the second-order polynomial and Gaussian kernel
spaces respectively. We further propose simplified versions
of the aforementioned attention blocks which exclude the
inner attention (i.e. without AiA). With regards to the person
retrieval task, we also propose an efficient feature extractor,
which encodes both person appearance and part features.
We incorporate the aforementioned AiA blocks in our net-
work, termed AiA-Net, and empirically show that state-of-
the-art performances can be achieved by incorporating the
AiAmodules in representation learning. This includes exten-
sive evaluations on five standard person re-ID benchmarks
along with the required ablation studies to understand the
effect of various AiA blocks. Furthermore, our AiA-Net-V
also achieves state-of-the-art result on the video person
retrieval task, showing the generalization to video data.

Futureworks involve analyzing theAiA for addressing other
visual tasks and developing additional forms of attentionmech-
anisms by exploiting complementary non-linear information.
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