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This work studies the multi-weather restoration problem. In real-life scenarios, rain and haze, two often co-occurring common

weather phenomena, can greatly degrade the clarity and quality of the scene images, leading to a performance drop in the

visual applications, such as autonomous driving. However, jointly removing the rain and haze in scene images is ill-posed and

challenging, where the existence of haze and rain and the change of atmosphere light, can both degrade the scene information.

Current methods focus on the contamination removal part, thus ignoring the restoration of the scene information afected by

the change of atmospheric light. We propose a novel deep neural network, named Asymmetric Dual-decoder U-Net (ADU-Net),

to address the aforementioned challenge. The ADU-Net produces both the contamination residual and the scene residual to

eiciently remove the contamination while preserving the idelity of the scene information. Extensive experiments show our

work outperforms the existing state-of-the-art methods by a considerable margin in both synthetic data and real-world data

benchmarks, including RainCityscapes, BID Rain, and SPA-Data. For instance, we improve the state-of-the-art PSNR value by

2.26/4.57 on the RainCityscapes/SPA-Data, respectively. Codes will be made available freely to the research community.

CCS Concepts: · Computing methodologies→ Reconstruction.

Additional Key Words and Phrases: Joint rain and haze removal, Asymmetric Dual-decoder U-Net (ADU-Net), contamination

residual, scene residual

1 INTRODUCTION

When photographing in bad weather, the quality of outdoor scene images can be greatly degraded by the
contamination, i.e., rain, haze or snow, etc. distributed in the air. Such contamination absorbs or disperses
the scene light, thereby reducing the contrast and color idelity of the scene image. Hence, the existence of
contamination signiicantly afects many real-world vision systems, such as scene recognition, object tracking,
semantic segmentation, etc, and all of these vision systems are essential for autonomous driving [7, 13, 60].
In other words, such outdoor vision systems, which works eiciently in ideal weather condition, will sufer a
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plummet due to complex real-world weather conditions. Therefore, it is essential to develop algorithms to restore
images contaminated by diferent contaminants as a pre-processor for such outdoor vision systems.
In this work, we focus on a real yet less-investigated scenario, the co-occurrence of the rain and haze in the

scenes. Both image rain removal and haze removal are challenging low-level computer vision tasks. Many eforts
have been made to solve the individual rain removal and haze removal tasks [48, 52, 56]. However, only a few
works consider removing the rain and haze jointly in scene images [18, 21, 47]. In the real-world scenario, it is a
very common situation that the rain and haze co-occur in the rainfall environment (see Fig. 1a) [17]. Along with
rain streaks and raindrops, the uneven haze will also obscure the image, interfering with the perception of the
environment. Such a scenario brings challenges to the outdoor vision systems that are required to jointly remove
the rain and haze in images.

(a) Input (b) Ground Truth (c) True Res

(d) Contamination Res (e) Scene Res (f) Output Res

Fig. 1. Example of a scene image and its residual maps. (a) is the input image and (b) is the ground truth from RainCityscapes
dataset. Image in (c) is the diference between (a) and (b). (d) and (e) are the contamination residual and scene residual. (f)
is the result of (a)+(b). łResž indicates łResidualž. The contamination and scene details are included in the red and yellow
boxes, respectively (zoom in to find the details).

The existing methods for single-image rain and haze removal can be roughly categorized into two categories:
priority knowledge-oriented approaches and data-driven approaches. The prior knowledge-based image rain
removal [24, 31, 36] and haze removal methods [15, 19, 63] are mostly based on the physical imaging models.
However, such solutions sufer from the robustness issue when deployed into real-world scenarios [32, 62].
Recent advances in deep learning demonstrate dramatic success in haze removal [9, 27, 43] and rain removal [40,
49, 59]. Learning-based methods in both ields have achieved cutting-edge performance on synthetic datasets.
However, methods designed for certain contamination cannot handle the complex real-world scenario with the
co-occurrence of rain and haze in the natural scenes. Recent studies also pointed out the necessity of joint-removal,
such as Han et al. [18] decompose rain and haze by a Blind Image Decomposition Network, and Kim et al. [25]
remove rain and haze by a frequency-based model. A new dataset for the purpose of benchmarking joint rain and
haze removal, named RainCityScapes, is also proposed to facilitate research on this important task [21]. Thus
such a joint-removal task becomes an open problem in the community and calls for further study.
Recent advances in low-level computer vision have made remarkable progress, where a well-trained deep

neural network can almost perfectly remove the contamination in outdoor scene images. However, no existing
work considers paying attention to the scene diference in the restoration process. We observe that the true
residual, obtained by (Input − Ground Truth) (see Fig. 1c), contains the scene information. That is, a neural
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network designed to focus on contamination may sufer from a gap in recovering the scenes. Such a gap motivates
us to develop a uniied method to remove the contamination and compensate for the scene information in one go.

In real-world scenarios, the weather condition is complex, that is, diferent components, such as rain streaks and
haze, may co-occur in the scenes. The occurrence of some components, i.e., heavy haze, impacts the atmospheric
light. As a consequence, the scene information at the photometric level can be degraded. Physically speaking,
along with removing contamination in the image, it is also necessary to restore scene information afected by the
change of atmospheric light. To address this issue, we propose a novel dual-branch architecture, called Asymmetric
Dual-decoder U-Net (ADU-Net). The ADU-Net consists of a single-branch encoder and an asymmetric dual-
branch decoder. In the asymmetric dual-branch architecture, one branch, the contamination residual branch, is
designed to remove the contamination (see Fig. 1d). Another branch, the scene residual branch, is required to
perform the recovery of scene information (see Fig. 1e). The contamination residual branch, equipped with a novel
channel feature fusion (CFF) module and windowmulti-head self-attention (W-MSA), produces the contamination
residual. The special design allows the branch to focus more on the local foreground information in the image,
thus extracting the contamination residual. The scene branch, powered by a novel global channel feature fusion
(GCFF) module and shift-window multi-head self-attention (SW-MSA) mechanism, aims to compensate for the
scene information. Unlike the contamination residual branch, the scene residual branch is designed to focus
more on the global contextual information in the image, thus extracting the scene residual. The joint eforts
of contamination residual and scene residual separate the rain and haze from the input scene image, while
preserving the scene of the image (see Fig. 1f). The proposed ADU-Net can efectively remove the diferent
contamination in the images and compensate for the scene information on multiple benchmark datasets, including
RainCityscapes [21], BID rain [18] and SPA-Data [49].

Our contribution can be summarized as follows:

• We propose a novel yet eicient neural architecture, ADU-Net, to jointly remove rain and haze in scene
images.

• We present an asymmetric dual-decoder, which removes the contamination while compensating for the
scene information of the image. To the best of our knowledge, this is the irst work to consider the recovery
of scene information in deraining and dehazing tasks.

• Extensive experiments, including quantitative studies and qualitative studies, are conducted to evaluate the
efectiveness of the ADU-Net. Empirical evaluation shows our method outperforms the current state-of-
the-art methods by a considerable margin.

2 RELATED WORK

2.1 Single-image Rain Removal

The very irst single-image rain removal methods were based on a priori knowledge. Morphological component
analysis (MCA) [24] employs bilateral ilters to extract high-frequency components from rain images, where the
high-frequency components are further decomposed into "rain components" and "non-rain components" through
dictionary learning and sparse coding. Luo et al. [36] proposed a single-image rain removal algorithm based on
mutual exclusion dictionary learning. Gaussian mixture model prior knowledge [31] was utilized to accommodate
multiple orientations and scales of rain streaks. In [62], Zhu et al. detected the approximate region, where the rain
streaks were located, to guide the separation of the rain layer from the background layer. However, early models
based on prior knowledge often sufer from a lack of stability in real scenarios [24, 31, 36]. Since 2017, deep
learning approaches have been developed for rain removal tasks. Deep detail networks [16] narrowed the mapping
from input to output and combined prior knowledge to capture high-frequency details, making the model stay
focused on rain streaks information. By adding an iterative information feedback network, JORDER [53] used a
binary mapping to locate rain streaks. A non-locally enhanced encoder-decoder structure [28] was proposed to
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capture long-range dependencies and leverage the hierarchical features of the convolutional layer. In [30], Li et
al. proposed a deep recurrent convolutional neural network to remove rain marks located at diferent depths
progressively. A density-aware multi-stream connectivity network was introduced for rain removal in [58]. By
adding constraints to the cGAN [23], Zhang et al. [59] generated more photo-realistic results. A progressive
contextual aggregation network [40] was proposed as a baseline for rain removal. A real-world rain dataset was
constructed by Wang et al. [49], they also incorporated spatial perception mechanisms into deraining networks.
Recently, Zhu et al. [61] proposed a gated non-local depth residual network for image rain removal. Yu et al.[55]
conducted a comprehensive analysis of various aspects of existing rain removal models and their robustness
against adversarial attacks. Based on these analyses, they proposed a more robust approach to address this issue.
While signiicant progress has been made in the research on image rain removal, the existing studies lack

consideration for real-world rainy scenarios, limiting their efectiveness in practical applications. In contrast, our
methods take a more realistic approach by not only addressing rain streak occlusions commonly encountered in
rainy weather but also considering the impact of haze, which is prevalent in the atmosphere, on atmospheric
light. By incorporating these factors, our methods ofer a more comprehensive and practical solution that better
aligns with real-world conditions.

2.2 Single-image Haze Removal

{Similar to image rain removal methods, early work on image dehaze tended to employ statistical methods to
acquire prior information by capturing patterns in haze-free images. Representative methods include Dark channel
prior [19], color-line prior [15], colour attenuation prior [63], etc.. However, prior-based methods tend to distort
colors and thus produce undesirable artifacts [15, 19, 63]. In the deep learning era, methods started to not rely on
prior knowledge, but to estimate atmospheric light and the transmission map directly. For example, Cai et al. [5]
proposed an end-to-end dehazing model named DehazeNet, where haze-free images are produced by learning
the transmission rate. Similarly, Ren et al. [41] employed multi-scale deep neural networks to learn the mapping
relationship between foggy images and their corresponding transmission maps, aiming to reduce the error in
estimating the transmission maps. AODNet [27] reconstructed the atmospheric scattering model by leveraging an
improved convolutional neural network to learn the mapping relationship between foggy and clean pairs. In [57],
a single network was proposed to simultaneously learn the intrinsic relationship between transmission maps,
atmospheric light, and clean images. Ren et al. [42] built an encoder-decoder neural network to enhance the
dehazing process. A network with an enhancer and two generators was proposed by Qu et al. [39]. Chen et al. [9]
proposed a patch map-based PMS-Net to efectively suppress the distorted color issue. Dong et al. [12] proposed
MSBDN (Multi-Scale Boosted Dehazing Network) based on the U-Net architecture, incorporating boosting and
error feedback as guiding principles. Although the method achieves good results, it sufers from a large number of
parameters. Yeh et al. [54] decomposed hazy images into base components and detail components and proposed
MSRL-DehazeNet, which based on residual learning and U-Net architecture. Sun et al. [46] proposed SADNet
based on the attention mechanism using a semi-supervised approach for solving practical problems. Song et

al. [45] introduced Swin Transformer into image haze removal and proposed DehazeFormer, which achieved
signiicant improvements on multiple datasets. Unlike image rain removal, image dehazing often consider the
impact of haze on atmospheric light intensity, which can compensate for the limitations in rain removal methods.
Our methods combine these approaches with the research on rain removal, resulting in a more realistic approach
that better aligns with real-world scenarios.

2.3 Other Related Works

Unlike previous single-task models, some researchers have also explored the simultaneous enhancement of both
rain removal and haze removal in images. Hu et al. [21] built an imaging model for rain streaks and haze based on
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the visual efect of rain and the scene depth map to synthesize a realistic dataset named RainCityscapes. Han et

al. [18] constructed a superimposed image dataset and proposed a simple yet general Blind Image Decomposition
Network to decompose rain streaks, raindrops, and haze in a blind image decomposition setting. Kim et al. [25]
proposed a frequency-based model for removing rain and haze, where the frequency-based model divided the
input image into high-frequency and low-frequency parts with a guided ilter and then employed a symmetric
encoder-decoder network to remove rain and haze separately. Kulkarni et al. [26] proposed a lightweight network
that combines convolutions at diferent scales with spatial attention and channel attentionmechanisms, employing
a dual restoration mechanism to handle images afected by various weather conditions. Recently, Li et al. [29] used
a neural structure search based approach to handle multiple weather situations, however, it has a large number
of parameters as it uses multiple encoders for each weather removal task. Chen et al. [10] proposed a training
approach based on knowledge distillation, considering the perspective of training strategies. They introduced a
multi-teacher model and a single-student model, enabling a single model to handle various weather conditions
without increasing the parameter size. Valanarasu et al. [47] proposed a single transformer-based encoder-decoder
network while restored image with a learnable weather type query in the decoder to learn the type of weather
degradation. Wang et al. [50] enhanced the U-Net architecture by adding a small decoder and a dilated convolution
attention module. This enhancement enabled the network to capture both global information and iner details
in high-resolution remote sensing images. After an in-depth study of related works, we have identiied two
primary factors that contribute to image quality degradation: contamination and scene information afected
by atmospheric light. To efectively address these factors, we introduce an innovative asymmetric dual-branch
structure, allowing independent processing of each category. By separately optimizing contamination removal
and scene information recovery, our method achieves enhanced overall performance and improved image quality.

3 METHOD

This section details the proposed method in a top-down fashion: starting from the problem formulation of our
application, followed by the architecture of the proposed Asymmetric Dual-decoder U-Net (ADU-Net) and its
building block, namely asymmetric dual-decoder block (ADB).

Notations. Throughout the paper, we use bold capital letters to denote matrices or tensors (e.g., � ), and bold
lower-case letters to denote vectors (e.g., �).

3.1 Problem Formulation

Let a third-order tensor, � ∈ R�×�×� , denote an input image, where � , � and� present the channel, height,
and width of the image, respectively. In our application, both rain and haze are synthesized into the origin scene
images as input images. Each input image � is labeled with its ground truth image � gt without rain and haze
in the scene. Our ADU-Net �� , consisting of a single branch encoder �E, and an asymmetric dual-decoder �AD,
can remove the rain and haze in the input image, such that the output of the ADU-Net, � = �� (� ) can restore
its ground truth scene � gt. The ADU-Net is trained to learn a set of parameters, � ∗, with minimum empirical
objective value L(� gt, � ).

3.2 Network Overview

We irst give a sketch of the proposed ADU-Net. In rain and haze removal applications, one ideal option is to
employ the deep neural network to understand the scene of the input image and separate the rain and haze from
the input image. In our work, we develop the ADU-Net to remove the rain and haze jointly. As shown in Fig. 2,
the ADU-Net is stacked by a single branch encoder and an asymmetric dual-decoder. In the encoder �E, we have
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Fig. 2. The network architecture of the proposed ADU-Net, which consists of an encoder �E and an asymmetric dual-decoder
�AD. �E has five Conv� blocks and �AD has four ADB� blocks and a Conv block. The network is optimized by the SSIM loss
function.

ive convolutional blocks, with each denoted by Conv� , 0 ≤ � ≤ 4. The output of each convolutional block is
denoted by � � = Conv� (� �−1) and � −1 = � .
Then a following asymmetric dual-decoder �AD aims to recover the scene image without rain and haze (see

Fig. 2). The proposed asymmetric dual-decoder is stacked of a set of ADBs, which produce two streams of latent
features, denoted by �

c
� and �

s
� in the �-th ADB. Speciically, the processing can be formulated as

�
c
0,�

s
0 = ADB0 (� 3, � 4), (1)

or

�
c
� ,�

s
� = ADB� (�

c
�−1,�

s
�−1, � 3− � ), � > 0. (2)

After the last ADB, each stream of latent features � c
3 or �

s
3 is encoded by a convolutional block to recover the

channel dimensions into the image space (e.g., � = 3), as � c
= Conv5 (�

c
3) and �

s
= Conv5 (�

s
3). We denote the

�
c as the contamination residual, and �

s as the scene residual. Having the � c and �
s at hand, one can obtain the

restored scene image � as

� = � − �
c − �

s . (3)

The network is optimized by the negative SSIM loss [51] as LSSIM = −SSIM(� gt, � ). Noted the common practice
uses both the negative SSIM loss and MSE loss as the objective. Empirically we observed that a negative SSIM
loss works better in the proposed ADU-Net, which will be justiied in ğ 4.4.
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3.3 Asymmetric Dual-decoder Block

In this part, we will describe the asymmetric dual-decoder �AD in ADU-Net. As shown in Fig. 2, �AD consists of
four ADBs and a convolutional block, while the ADBs are stacked by two diferent instantiations (e.g., ADB0 vs.
ADB� , � = 1, 2, 3). In this following, we will irst describe ADB0, a simple form of the block. Then with minor
modiications, we can realize the ADB� , � = 1, 2, 3 on top of the ADB0.
The ADB0 is a two branch architecture (see Fig. 2), which receives the � 3 and � 4 as input, and produces two

latent features � c
0 and �

s
0. In ADB0, the two latent features are respectively encoded by two branches of network,

namely contamination residual net (denoted by �c), and scene residual net (denoted by �s), given by

�
c
0 = �c (� 3, � 4) (4)

and

�
s
0 = �s (� 3, � 4). (5)

Contamination Residual Net. In the contamination residual net (�c), � 3 and � 4 are fed to a channel feature
fusion (CFF) module to localize the rain and haze areas in the scene image, as

�
c
0 = CFF(� 3, � 4). (6)

The details of CFF are illustrated in Fig. 3a. Given two feature maps � 3 and � 4 as input, it irst fuses the two
inputs by using element-wise addition and then feeds the fused feature maps to 2-layer convolutional blocks to
obtain the attention weights, formulated by

�
c
0 = �

(

BN
(

Conv(ReLU(BN(Conv(� 3 ⊕ � 4))))
)

)

, (7)

where � , BN, ReLU are sigmoid function, batch normalization, and rectiied linear unit activation, respectively.
Here, the kernel size of Conv is 1× 1, which can be understood as applying a fully-connected layer to the channel
features.

Then we can apply the attention weights to the input feature maps and obtain the fused output, as

�
c
0 =

(

�
c
0 ⊗ � 3

)

⊕
(

(� −�
c
0) ⊗ � 4

)

. (8)

(a) Channel Feature Fusion Module (b) Global Channel Feature Fusion Module

Fig. 3. Architecture of the global channel feature fusion module and channel feature fusion module.

The CFF module fuses the input feature maps, and the fusion weights are produced via the channel patterns.
We further employ a self-attention mechanism to build the spatially long-range dependencies of the fused feature
maps �s

0, given by

�
c
0 = W-MSA(�c

0), (9)

where W-MSA is the window multi-head self-attention from the Swin Transformer [35].
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Having fusing the input feature maps and being processed by the attention mechanism, we can obtain the
contamination residual feature maps as

�
c
0 = Conv(� c

0). (10)

The contamination residual net (�c) aims to attend to the rainy and hazy regions, thereby highlighting the rain
and haze components in the contamination residual feature maps.
Scene Residual Net. Since we can observe from the contamination residual (� c) that it contains the scene
information along with the rain and haze, we develop a scene residual net (�s), that can compensate for the
removed scene information in the image. In doing so, the global channel feature fusion (GCFF) module is proposed
to capture valuable global scene information of the image, and fuse features, as

�
s
0 = GCFF(� 3, � 4). (11)

As shown in Fig. 3b, � 3 and � 4 are irst fused, and summarized to its global feature, as

�
s
0 = GAP(� 3 ⊕ � 4), (12)

where GAP indicates the global average pooling and�s
0 indicates the resultant vector. Then a 2-layer convolutional

block is used to modulate per element of the global feature �s
0, written by:

�
s
0 = �

(

BN
(

Conv(ReLU(BN(Conv(�s
0))))

)

)

. (13)

We can thereby fuse the input feature maps as:

�
s
0 =

(

�
s
0 ⊗ � 3

)

⊕
(

( � −�
s
0) ⊗ � 4

)

. (14)

where � indicates a unit vector with the same size as�s
0.

After GCFF, we employ the shift-windowmulti-head self-attention (SW-MSA) to enhance the spatial interaction
of the feature maps and obtain the scene residual features, described by

�
s
0 = SW-MSA(�s

0), (15)

and

�
s
0 = Conv(� s

0). (16)

Instantiation of ��� � . The diference between ADB� , � ≠ 0 and ADB0 is that ADB0 receives two feature
maps as input, while ADB� , � ≠ 0 includes three feature maps as input. To adapt the architecture of ADB0 to
ADB� , � ≠ 0, we make minor modiication (see Fig. 2). Speciically, for any block, ADB� , its input includes the

output from � − 1-th ADB blcok, e.g., � c
�−1,�

s
�−1 ∈ R�×ℎ×� , and from the 3 − �-th convolutional encoder, e.g.,

� 3− � . We irst concatenate the � c
�−1,�

s
�−1, and reduce its dimension from 2� × ℎ ×� to � × ℎ ×� , as

�̄ �−1 = Concat(� c
�−1,�

s
�−1). (17)

and

�̃
c
�−1 = Convin (�̄ �−1), �̃

s
�−1 = Convin (�̄ �−1). (18)

where Convin indicates a 2-layer convolution block with batch normalization and rectiied linear unit activation.
Here, the kernel size of convolution layers is 3 × 3.
With � 3− � , the output of ADB� can be obtained as

�
c
� = �c (�̃

c
�−1, � 3− � )

= Convout

(

W-MSA
(

CFF(�̃
c
�−1, � 3− � )

)

) (19)
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and

�
s
� = �s (�̃

s
�−1, � 3− � )

= Convout

(

SW-MSA
(

GCFF(�̃
s
�−1, � 3− � )

)

)

.
(20)

Here, Convout indicates a convolution layer with the kernel size of 3 × 3 followed by a leaky rectiied linear unit
and another convolution layer with the kernel size of 1 × 1 also followed by a leaky rectiied linear unit.
In this work, we propose a novel architecture for the rain and haze removal task. Considering the network

capacity and hardware overhead, we propose two sizes of networks. One is the lite network, called ADU-Net,
and the other is the large network, called ADU-Net-plus. In ğ 4, we present the details of two architectures. The
network performance is also evaluated in ğ 4.

Remark 1. The residual U-Net architecture has been used extensively for the rain or haze removal tasks [6], as

shown in Fig. 4a. Having the observation that the contamination residual, produced by the decoder, contains the scene

information, we aim to develop a dual-decoder U-Net, with one decoder producing the contamination residual, and

another one producing the scene residual as a scene compensator. Its initial design is shown in Fig. 4b. Considering

the physical property of the contamination and scene information in the input image, we propose a novel network

architecture, ADU-Net, where we integrate two decoders with non-identical architectures (see Fig. 4c). We justify our

design in ğ 4.4.

(a) Residual U-Net (b) Dual-decoder U-Net (c) ADU-Net

Fig. 4. Schematic comparison of the ADU-Net architecture and U-Net-based architectures. (a) is a vanilla architecture of the
residual U-Net. (b) is a simple form of the residual U-Net with dual decoders. (c) is the diagram of our method.

4 EXPERIMENTS

In this section, we irst give the implementation details of the proposed ADU-Net and ADU-Net-plus. Then the
benchmark datasets and evaluation protocol are also introduced. We further compare our network to the state-
of-the-art methods and conduct ablation studies to evaluate the superiority of the proposed network and each
component. In the inal part, we demonstrate substantial qualitative results to analyze the superior performance
of our network.

4.1 Implementation Details

Network Architecture. The overall neural architecture of the proposed network is shown in Fig. 2. Table 1 lists
the kernel size of the convolutional layers. In the encoder block, the feature maps are processed by the Batch
Normalization [22] and ReLU [1] after the convolutional layer, i.e., Conv0, Conv1, Conv2, Conv3, Conv4. Then
the max-pooling layer is employed to down-sample the feature maps in each layer. In the decoder block, we
also list the kernel size in the convolutional layers (see Table 1), and employ the Leaky ReLU as the activation

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 1. Details of the kernel size in convolution layers.� and� denote the height and width of the input image, respectively.

Layer name Output size ADU-Net ADU-Net-plus

Conv0 � ×�

[

3 × 3, 32
3 × 3, 32

] [

3 × 3, 64
3 × 3, 64

]

Conv1
�
2 × �

2

[

3 × 3, 64
3 × 3, 64

] [

3 × 3, 128
3 × 3, 128

]

Conv2
�
4 × �

4

[

3 × 3, 128
3 × 3, 128

] [

3 × 3, 256
3 × 3, 256

]

Conv3
�
8 × �

8

[

3 × 3, 256
3 × 3, 256

] [

3 × 3, 512
3 × 3, 512

]

Conv4
�
16 ×

�
16

[

3 × 3, 256
3 × 3, 256

] [

3 × 3, 512
3 × 3, 512

]

ADB0
�
8 × �

8

[

3 × 3, 128
3 × 3, 128

] [

3 × 3, 256
3 × 3, 256

]

ADB1
Convin

�
4 × �

4

[

3 × 3, 128
3 × 3, 128

] [

3 × 3, 256
3 × 3, 256

]

Convout
�
4 × �

4

[

3 × 3, 64
3 × 3, 64

] [

3 × 3, 128
3 × 3, 128

]

ADB2
Convin

�
2 × �

2

[

3 × 3, 64
3 × 3, 64

] [

3 × 3, 128
3 × 3, 128

]

Convout
�
2 × �

2

[

3 × 3, 32
3 × 3, 32

] [

3 × 3, 64
3 × 3, 64

]

ADB3
Convin � ×�

[

3 × 3, 32
3 × 3, 32

] [

3 × 3, 64
3 × 3, 64

]

Convout � ×�

[

3 × 3, 16
3 × 3, 16

] [

3 × 3, 32
3 × 3, 32

]

Conv5 � ×�

[

3 × 3, 3
3 × 3, 3

] [

3 × 3, 3
3 × 3, 3

]

Parameter size 6.63 × 106 26.45 × 106

function. Having computational eiciency in mind, we develop two neural networks of diferent scales. The light
one is denoted as ADU-Net, while the large one is denoted as ADU-Net-plus. As shown in Table 1, the diference
between the two networks is merely the modiication to the channel dimensions. The superiority of our network
will be evaluated in ğ 4.3.

Network Training. We implement our method using PyTorch deep learning package [37]. All experiments
are evaluated on NVIDIA GTX 2080ti GPUs. In the experiments for RainCityscapes [21], BID Rain datasets [18]
and NH-HAZE [2], the input images are resized to 512 × 256. For the SPA-Data, we follow the practice in [49],
which uses original images with size of 256 × 256. The Adam optimization scheme with an initial learning rate of
0.001 is used to optimize the network. We train the network for 100 epochs for RainCityscapes and BID Rain
datasets, and 20 epochs for SPA-Data. The learning rate adjustment strategy is employed to realize the learning
rate decay, where the learning rate is decayed by a factor of 0.1 when the accuracy of the network does not
improve in 5 epochs.
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4.2 Datasets and Evaluation Protocol

We evaluate the proposed methods on two synthetic datasets, i.e., RainCityscapes [21], BID Rain [18], and two
real-world datasets, i.e., SPA-Data [49], and NH-HAZE [2]. In the following, we will introduce these datasets and
the statistics of each dataset are illustrated in Table 2.
RainCityscapes. The RainCityscapes dataset is synthesized from the Cityscapes dataset [11]. It takes 9,432

images synthesized from 262 Cityscapes images as the training set and 1,188 images synthesized from 33
Cityscapes images as the test set. All the selected images of Cityscapes are overcast, without obvious shadow.
{Rain streaks and haze are synthesized by diferent intensity maps. By adjusting the intensity of the rain streaks
and haze, each original image can produce 36 diferent synthesized images. The results of diferent methods are
reported in Table 3.

BID Rain. The BID Rain dataset is also synthesized from the Cityscapes dataset. It samples 2,975 images from
the validation set of the Cityscapes dataset as a training set, and 500 images from the test set of the Cityscapes
dataset as its test set. This is a complicated dataset as the images contain rain streaks, haze, snow, and raindrops.
The rain streaks masks are sampled from Rain100L and Rain100H [53], and the snow masks are sampled from
Snow 100K [34]. The haze masks include three diferent intensities originating from FoggyCityScape [44]. The
raindrops are produced from the metaball model [4]. Those weather components are mixed with the images in
the Cityscapes dataset using the physical imaging models [4, 19, 34, 44, 53]. In the training set, every image can
be mixed with each weather component with random probabilities, and we evaluate our model in six diferent
cases, the combinations of the weather components in each case are as follows (1): rain streaks, (2): rain streaks
and snow, (3): rain streaks and light haze, (4): rain streaks and heavy haze, (5): rain streaks, moderate haze and
raindrops and (6): rain streaks, snow, moderate haze and raindrops. Refer [18] for more details of six settings.
The results of diferent cases are shown in Table 4.

SPA-Data. The SPA-Data is a real-world dataset, which is cropped from 170 real rain videos, of which 86
videos are collected from StoryBlocks or YouTube, and 84 videos are captured by iPhone X or iPhone 6SP. Those
videos cover outdoor ields, suburb scenes, and common urban scenes. This dataset contains 638,492 image pairs
for training and 1,000 for testing. The results of SPA-Data are shown in Table 5.
NH-HAZE The NH-HAZE [2] is a valuable dataset for non-homogeneous haze research, as it ofers ground

truth images for evaluation. The dataset comprises 55 pairs of real-world outdoor scenes, where each pair consists
of a hazy image and its corresponding haze-free counterpart. The non-homogeneous haze present in these images
has been meticulously generated using a professional haze generator, ensuring an accurate representation of
real-life haze conditions. The results on the NH-HAZE dataset are presented in Table 6.
Evaluation Protocol. In our experiments, the network performance is quantitatively evaluated by the peak

signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. A higher value of PSNR and SSIM indicates
a better image recovery performance of the network.

Table 2. The Statistics of Datasets.

Dataset Train set Test set
Property Contamination

Synthetic Real world Rain streaks Haze Snow Raindrops

RainCityscapes 9,432 1,188 ✓ ✓ ✓

BID Rain 2,975 500 * 6 ✓ ✓ ✓ ✓ ✓

SPA-Data 638,492 1,000 ✓ ✓

NH-HAZE 40 15 ✓ ✓
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4.3 Comparison to the State-of-the-Arts

To verify the advance of our method, we compare the performance of our method with current state-of-the-art
methods across three datasets.
RainCityscapes. In the RainCityscapes dataset, we compare our methods to the the state-of-the-art rain

removal methods including RESCAN [28], PReNet [40], DuRN [33], RCDNet [48], SPANet [49] and MPRNet [56].
We also compare our methods with approaches that jointly remove the rain and haze, i.e., DAF-Net [20], DGNL-
Net [21], WiperNet [26], TransWeather [47] and GTRain [3]. The comparison with haze removal methods, like
EPDN [39], DCPDN [57], AECR-Net [52], is also conducted. The results are reported in Table 3. We can ind that
our vanilla solution, i.e. ADU-Net, outperforms the existing state-of-the-art methods. In particular, it improves the
PSNR/SSIM values of the DGNL-Net by 1.45/0.0017, indicating the superior design of our method. The plus version
of our method, i.e., ADU-Net-plus, again brings performance gain over the AUD-Net, where the ADU-Net-plus
improves the PSNR/SSIM values by 0.81/0.0021.

Table 3. Comparison with the State-of-the-Arts Methods of rain removal and haze removal on RainCityscapes dataset. †

indicates the network was trained on the RainCityscapes dataset. ‡ indicates the results of the algorithms as reported in [21].

1st/2nd best in red/blue.

Method PSNR SSIM

Input 15.55 0.7722

Haze removal
EPDN‡[39] 26.08 0.9306
DCPDN‡[57] 28.52 0.9277
AECRNet†[52] 28.77 0.9350

Rain removal

RESCAN‡[30] 24.49 0.8852
PReNet†[40] 27.34 0.9497
DuRN‡[33] 29.43 0.9487
RCDNet†[48] 30.56 0.8873
SPANet‡[49] 31.48 0.9656
MPRNet†[56] 32.33 0.9767

Rain and haze removal

DAF-Net†[20] 30.16 0.9531
DGNL-Net†[21] 32.38 0.9743

TransWeather†[47] 29.28 0.9216
GTRain†[3] 30.19 0.9597

WiperNet†[26] 30.21 0.9584
ADU-Net 33.83 0.9784

ADU-Net-plus 34.64 0.9805

BID Rain. Since the scene in the RainCityscapes dataset only contains rain and haze information, we further
evaluate our methods on the challenging dataset, BID Rain, to verify its generalization of working in complicated
weather conditions. Table 4 illustrates the comparison of the model performance in each weather condition.
We can observe that the proposed ADU-Net can outperform the BIDeN [18] in each of the cases. Especially
in cases (2) and (3), the ADU-Net brings the maximum performance gain. One possible explanation is that the
proposed ADU-Net is designed with a dual-branch decoder, which is tailored for the images in case (2) including
the rain streaks and snow, or that in (3) including rain streaks and a light haze. However, the improvement
in the other cases reveals the generalization of our proposal. Along with the ADU-Net, its plus version can
signiicantly improve both PSNR/SSIM values, showing the superiority of our network architecture. In case (4),
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Table 4. Comparison with the State-of-the-Arts Methods on BID Rain dataset. † indicates the network was trained on the

BID Rain dataset. 1st/2nd best in red/blue.

Case Input PReNet RCDNet BIDNet TransWeather GTrain ADUNet ADUNet-plus

(1)
PSNR 25.51 32.69 28.05 31.17 31.88 31.91 34.62 39.05
SSIM 0.8144 0.9803 0.9527 0.9438 0.9307 0.9596 0.9827 0.9877

(2)
PSNR 18.69 30.52 29.84 29.47 29.37 30.03 32.47 36.48
SSIM 0.5979 0.9504 0.9351 0.9089 0.8844 0.9178 0.9560 0.9742

(3)
PSNR 17.48 29.65 30.17 28.90 29.46 30.14 31.48 33.75
SSIM 0.7427 0.9568 0.9536 0.9325 0.9176 0.9470 0.9669 0.9777

(4)
PSNR 11.55 25.80 26.74 26.82 27.51 27.33 26.52 29.30
SSIM 0.6017 0.9233 0.9210 0.9125 0.8949 0.9222 0.9360 0.9565

(5)
PSNR 14.02 27.36 28.30 27.31 26.94 27.74 28.54 30.32
SSIM 0.6455 0.9302 0.9285 0.9116 0.8833 0.9191 0.9443 0.9594

(6)
PSNR 12.38 26.56 27.26 26.54 26.22 26.85 27.63 29.66
SSIM 0.4916 0.9046 0.9005 0.8675 0.8504 0.8857 0.9222 0.9418

Table 5. Comparison with the State-of-the-Arts Methods on SPA-Data dataset. ‡ indicates the results of the algorithms as

reported in [48]. † indicates the network was trained on the SPA-data. 1st/2nd best in red/blue.

Method PSNR SSIM

Input 34.15 0.9269
RESCAN‡[30] 38.19 0.9707
PReNet‡[40] 40.16 0.9816
SPANet‡[49] 40.24 0.9811
RCDNet‡[48] 41.47 0.9834

TransWeather†[47] 38.31 0.9757
WiperNet†[26] 41.73 0.9905

ADU-Net 44.19 0.9885
ADU-Net-plus 46.04 0.9924

the performance of ADU-Net is lower than that of RCDNet [48], BIDeN [18], TransWeather [47] and GTrain [3].
One possible explanation is that the łheavy hazež covers the scenes, which makes it diicult for our network to
produce the scene residual. Nevertheless, this issue is addressed by increasing the parameter size, supported by
the performance in ADU-Net-plus.
SPA-Data. We also evaluate our methods in the large-scale dataset, SPA-Data. We compare our methods to

the existing state-of-the-art methods in Table 5, including RESCAN[30], PReNet[40], SPANet[49], RCDNet[48]
and WiperNet[26]. As shown in Table 5, the proposed methods outperform the existing methods by a large
margin. For example, the improvements read of 2.72/0.0051 (PSNR/SSIM) from ADU-Net and 4.57/0.0090 from
ADU-Net-plus, as compared to RCDNet, showing the strong performance of our network architecture. Indeed,
although ADU-Net exhibits a slightly lower SSIM compared to WiperNet by 0.0020, its superiority in PSNR by
2.46 highlights its excellent performance. Furthermore, ADU-Net-plus outperforms WiperNet, leading in both
PSNR and SSIM by 4.31 and 0.0019, respectively. These indings airm the robustness and eicacy of our proposed
methods for image rain removal in real-world scenarios.
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Table 6. Comparison with the State-of-the-Arts Methods on NH-HAZE dataset. ‡ indicates the results of the algorithms as

reported in [45]. † indicates the network was trained on the SPA-data. 1st/2nd best in red/blue.

Method PSNR SSIM

Input 11.48 0.4023
DehazeNet‡[5] 16.62 0.524
FFA-Net‡[38] 19.87 0.692
MSBDN‡[12] 19.23 0.706
AECRNet‡[52] 19.88 0.717

DehazeFormer-S‡[45] 20.47 0.731
ADU-Net 28.37 0.887

ADU-Net-plus 29.46 0.890

NH-HAZE. To showcase the efectiveness of our approach, we conducted experiments using the real-world NH-
HAZE dataset [2]. In Table 6, we compare our methods with state-of-the-art techniques, including MSBDN [12],
FFA-Net [38], AECRNet [52], and DehazeFormer [45]. The results, as presented in Table 6, demonstrate signiicant
performance improvements with our proposed methods surpassing existing approaches by a wide margin. For
instance, when compared to DehazeFormer-S, ADU-Net and ADU-Net-plus exhibit remarkable improvements
of 7.9/0.156 (PSNR/SSIM) and 8.99/0.159, respectively. These outcomes highlight the strong performance of our
network architecture.

Comparison of Model Complexity and Time Cost. In addition to analyzing PSNR and SSIM, we also com-
pare the complexity of our methods with the existing state-of-the-art methods in Table 7, including PReNet [40],
RCDNet [48], AECRNet [52] and DGNL-Net [21]. We employ GFLOPs (Giga Floating Point Operations) to quantify
the complexity of the model. Additionally, we assess the run-time complexity by averaging the training time per
epoch (s/epoch). It is evident from the table that ADU-Net stands out with the smallest GFLOPs and the second
shortest s/epoch. Although our model’s runtime is slightly higher compared to DGNL-Net [21], we have demon-
strated superior performance on both PSNR and SSIM. In our proposed methods, the convolutional layers play a
signiicant role in the overall computational load. We are proud to share that ADU-Net achieves an impressive
50% reduction in kernel size compared to ADU-Net-plus while maintaining an exceptional performance level of
95%. We believe this signiicant reduction in complexity makes ADU-Net a more eicient and practical choice for
various applications. However, in cases where computational resources are abundant and time is not a constraint,
choosing ADU-Net-plus to achieve better performance is also a viable option.

Table 7. Model Complexity and Run-time Cost. The PSNR/SSIM are the results of the RainCityscapes dataset. 1st/2nd best
in red/blue.

Model GFLOPs s/epoch PSNR SSIM

PReNet[40] 132.88 2145.45 27.34 0.9497
RCDNet[48] 48.46 3509.27 30.56 0.8873
AECRNet[52] 86.09 1113.68 28.77 0.9350
DGNL-Net[21] 39.53 837.28 32.38 0.9743

ADU-Net 31.65 1017.21 33.83 0.9784
ADU-Net-plus 125.71 1126.49 34.64 0.9805
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4.4 Ablation Study

In this section, we conduct thorough ablation studies to verify the efectiveness per component in the proposed
network. All studies in this section are conducted using ADU-Net on the RainCityscapes dataset.

Loss Function. In our implementation, the network is optimized by the negative SSIM loss, i.e., LSSIM. While
in many practices of the low-level computer vision tasks, the MSE loss i.e., LMSE, is employed [14]. In this
study, we evaluate the efectiveness of each loss function. As shown in Table 8, we can ind that each of the
loss functions works better for our rain and haze removal task, and the network performance training from the
two-loss functions is similar. However, the multi-task training, which optimizes the loss functions jointly, will
degrade the network performance, indicating that the network may be saturated using one loss function, and the
joint training will harm the network.

Table 8. Comparison of the efectiveness of Loss Functions. We use bold to indicate best the result.

Loss Function LMSE LSSIM LMSE + LSSIM

PSNR 33.17 33.83 33.74
SSIM 0.9720 0.9784 0.9774

Efect of Dual-branch Architecture. Our work naively proposes a dual-branch architecture, i.e., asymmetric
dual-decoder U-Net, for rain and haze removal tasks. In this study, we will justify the efectiveness of the dual-
branch design in our task (shown in Fig 4). Table 9 shows the empirical comparison of three architectures, i.e.,
Residual U-Net, Dual-decoder U-Net, and the proposed ADU-Net. The "Residual U-Net" represents the structure
shown in Figure 4a, while the "Dual-Decoder U-Net" also represents the structure depicted in Figure 4b. Table 9
veriies our design is reasonable, where the dual-decoder U-Net outperforms the vanilla version of the residual
U-Net and our ADU-Net can further bring the performance gain to the dual-decoder U-Net.

Table 9. Efect of dual-branch architecture in rain and haze removal. We use bold to indicate best the result.

Model PSNR SSIM

Residual U-Net 31.64 0.9712
Dual-decoder U-Net 32.26 0.9724
ADU-Net 33.83 0.9784

The above study shows our design low is reasonable. We further evaluate the efectiveness of the contamination
residual branch and scene residual branch in ADU-Net (see the results in Table 10). As compared to the Residual
U-Net, each branch can improve its performance, showing the efectiveness of the proposed residual branch.
Also, we can observe that the combination of the proposed residual branches can achieve further improvement,
indicating that those two decoders learn complementary features of the image. In Table 10, the irst row, "Residual
U-Net," is the same as in Table 9. The second row, "+Contamination residual branch," represents the model
where the decoder of Residual U-Net is replaced with the Contamination residual branch, and similarly, the third
row, "+Scene residual branch," represents the model where the decoder of Residual U-Net is replaced with the
Scene residual branch. From the experimental results, it can be observed that each branch contributes to the
improvement of PSNR and SSIM. However, combining both branches in the model leads to greater improvement.

Efect of Self-attention Module. As for Table 11, we aim to demonstrate that using W-MSA and SW-MSA in
both symmetric decoders is superior to using either one alone. The irst row (Dual-decoder U-Net) represents the
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Table 10. Efect of the dual-branch decoder in ADU-Net. We use bold to indicate best the result.

Model PSNR SSIM

Residual U-Net 31.64 0.9712
+ Contamination residual branch 32.30 0.9725
+ Scene residual branch 32.94 0.9744
ADU-Net 33.83 0.9784

architecture shown in Figure 4b. The second row (+W-MSA) indicates that W-MSA is used in both symmetric
decoders. Compared to the irst row, there is an improvement of 0.44/0.0037 in PSNR/SSIM, indicating that using
W-MSA alone brings only limited improvement. Similarly, the third row (+SW-MSA) indicates that SW-MSA is
used in both symmetric decoders. Compared to the irst row, there is an improvement of 0.51/0.0036 in PSNR/SSIM,
showing that using SW-MSA alone also brings a modest improvement. The third row (+W-MSA&SW-MSA)
represents the utilization of both W-MSA and SW-MSA in the two branches. There is an improvement of
0.74/0.0040 in PSNR/SSIM compared to the irst row. However, it should be noted that in our experiments, we
focused on saving the model with the best PSNR during training and did not speciically optimize for SSIM.
Therefore, we believe that the marginal decrease in SSIM does not necessarily indicate a decline in model
performance. We acknowledge that the beneits brought by simultaneously using both W-MSA and SW-MSA
may not be signiicant.

Table 11. Efect of Self-atention Module. We use bold to indicate best the result.

Model PSNR SSIM

Dual-decoder U-Net 32.26 0.9724
+ W-MSA 32.70 0.9761
+ SW-MSA 32.77 0.9760
+ W-MSA&SW-MSA 33.00 0.9764

Efect of Feature Fusion Module. In the proposed architecture of the ADU-Net, each decoder block has two
information lows, respectively encoding the contamination residual and scene residual (see Fig. 2 and Fig. 2).
Each information low yields the feature fusion w.r.t. the concern of physical properties. In this study, we evaluate
our design. Table 12 ablations the efectiveness of the feature fusion blocks. Each of the CFF or GCFF can improve
the accuracy by about 0.2 PSNR value. However, combining those two blocks can further bring an outstanding
performance gain on top of the individual one, around 0.6 PSNR value. This can greatly verify the good practice
of the feature fusion blocks in our design.

4.5 Application: Semantic Segmentation

To demonstrate the efectiveness of our approach for application, we conducted an evaluation of our approach
using the RainCityscapes dataset, chosen for its comprehensive assessment of overall image restoration. The
experimental results are presented in Table 13. As a baseline, we used DeepLabV3 [8] and performed semantic
segmentation on the RainCityscapes dataset. The evaluation metrics included �������� (Intersection-over-Union
for classes), ��������� (instance-level Intersection-over-Union for classes), �����������(Intersection-over-Union for
categories), ������������(instance-level Intersection-over-Union for categories), and accuracy.
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Table 12. Efect of Feature Fusion Module. We use bold to indicate best the result.

Model PSNR SSIM

Dual-decoder U-Net 32.26 0.9724
w/o GCFF&CFF 33.00 0.9764
+ CFF 33.25 0.9770
+ GCFF 33.21 0.9773
ADU-Net 33.83 0.9784

We conducted four types of experiments: original rainy images from the RainCityscapes dataset (Rainy Images),
rainy images derained by ADU-Net (Rain-free Images (ADU-Net)), rainy images derained by ADU-Net-plus
(Rain-free Images (ADU-Net-plus)), and ground truth images from the RainCityscapes dataset (Rain-free Images
(ground truth)). As shown in Table 13, the utilization of ADU-Net for removing rain and haze from the images
resulted in improvements across various evaluation metrics. The �������� metric showed a notable improvement
of 0.1047, while the ��������� increased by 0.0842. Furthermore, the ����������� experienced a signiicant boost
of 0.1241, and the ������������ demonstrated an even more substantial enhancement of 0.1896. Additionally,
the accuracy metric showed a notable increase of 0.0754. Similar positive advancements were observed for
ADU-Net-plus across all metrics.

It is noteworthy that the experimental results of the rainy images derained by ADU-Net (Rain-free Images (ADU-
Net)) and ADU-Net-plus (Rain-free Images (ADU-Net-plus)) were comparable. Considering the minimal diference
of only 0.81/0.0021 in terms of PSNR and SSIM, it indicates that there is a limited beneit in the application of
semantic segmentation models when the image restoration reaches a certain level. Further improvements are
necessary to achieve better results.

Table 13. Efect of ADU-Net on semantic segmentation. 1st/2nd best in red/blue.

Model ���class ����class ���category ����category Accuracy

Rainy Images 0.3649 0.1116 0.6293 0.3045 0.7823
Rain-free Images(ADU-Net) 0.4696 0.1958 0.7534 0.4941 0.8577

Rain-free Images(ADU-Net-plus) 0.4724 0.1951 0.7561 0.5005 0.8589
Rain-free Images(ground truth) 0.4841 0.2039 0.7644 0.5265 0.8625

4.6 Visualization

Along with the quantitative analysis in the above paragraphs, we further conduct qualitative analysis to verify
the superiority of our work. In this study, we irst illustrate the rain and haze removal performance between
our work and existing SOTA methods in synthetic datasets (see Fig. 5). Various real-world outdoor scenes are
also evaluated (see Fig. 6). The generalization of the proposed ADU-Net is further evaluated by removing other
contamination, e.g. only rain in Fig. 7, or rain and snow in Fig. 8.

The irst study is evaluated on the RainCityscapes dataset. We compare our method with the state-of-the-art
methods, including PReNet [40], AECR-Net [52] and DGNL-Net [21]. As shown in Fig. 5, our method can produce
a much clear scene image (see the red box for details). For example, in the fourth row of Fig. 5, our method
removes most of the haze and produces a clear shape of the tree branches. While other methods fail to recover
the tree branches. This clearly shows the superiority of our method.
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(a) Input (b) PReNet (c) AECR-Net (d) DGNL-Net (e) Ours (f) GroundTruth

Fig. 5. Visualization of contamination removal performance on the RainCityscapes. The first column (a) is the input image.
We compare our method with state-of-the-art algorithms, including PReNet [40], AECR-Net [52] and DGNL-Net [21]. (f) is
the ground truth.

(a) Input (b) PReNet (c) AECR-Net (d) DGNL-Net (e) Ours

Fig. 6. Visualization of contamination removal performance on real-world images with rain and haze. The first column (a)
is the input image. We compare our method with state-of-the-art algorithms, including PReNet [40], AECR-Net [52] and
DGNL-Net [21].

In the second study, we conduct the analysis on real-world images1 used in [49], to justify the potential of
our method in real scenarios. We again compare our method to PReNet, AECR-Net, and DGNL-Net. For a fair

1147 real rain images collected from Internet.
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comparison, each method adopts publicly available ine-tune weights trained on their own datasets. As can be
observed from Fig. 6, the scene images, generated by our method, are more clear and more realistic than those
from other methods. For example, as compared to the rain removal network PReNet, our method can also remove
the haze in real-world scenes. The hues of the recovered scene from our method are also more realistic than that
from the dehazing network AECR-Net and relective details of the scenes are maintained by our method. As
compared to DGNL-Net, the closest work to ours, {our ADU-Net can remove more rain streaks (the second row)
or haze (the third row) and retain more scene details (the irst row). This study can vividly show the efectiveness
of our method in real scenarios.

Fig. 7. Visualization of the contamination removal on the BID Rain dataset. The images in BID Rain are synthesized with
rain streaks, raindrops, snow, and haze. The first row is the input image. The second row and third row are contamination
residual and scene residual. The fourth row and fith row are the clean image and ground truth.

To demonstrate the generalization of our dual-decoder architecture in separating diferent contamination, we
show the residual produced by diferent branches. Fig. 7 shows the results of our method on the BID Rain dataset.
The irst row is the input image. The second row and third row present the masks of contamination residual
and scene residual. The fourth row and ifth row are the generated images and the ground truth. We can ind
that our method separates the contamination (e.g., snow or haze) and scene clearly, and produces high-quality
scene images. A similar observation is also made in the real-world images from Internet-Data in Fig. 8. This
study also veriies our motivation that most of the contamination components in the image are included in the
contamination residual while the scene residual contains more detail of the scene including building structures
and driveway lines. This analysis again illustrates the superior generalization of the proposed method.

5 CONCLUSION

In this paper, we propose ADU-Net, the irst module involving two residual branches, for the joint rain and haze
removal task. Unlike previous work focusing on the contamination removal only, ADU-Net recalls the importance
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Fig. 8. Visualization of the contamination removal on real-world rain images. The first row is the input image. The second
row and third row are contamination residual and scene residual. The fourth row is the clean image.

of restoring the scene information afected by the change of atmospheric light. By leveraging our proposed scene
residual and contamination residual, ADU-Net can produce clear scene images. The superiority of ADU-Net
is evaluated by extensive experiments, and the proposed ADU-Net outperforms the current state-of-the-art
approaches signiicantly across three benchmark datasets and tasks. We believe our study will serve as a strong
baseline for future work, and inspire more research work in the line of joint rain and haze removal task.
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