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Curved Geometric Networks for
Visual Anomaly Recognition

Jie Hong , Pengfei Fang , Weihao Li, Junlin Han, Lars Petersson, and Mehrtash Harandi

Abstract— Learning a latent embedding to understand the
underlying nature of data distribution is often formulated in
Euclidean spaces with zero curvature. However, the success
of the geometry constraints, posed in the embedding space,
indicates that curved spaces might encode more structural
information, leading to better discriminative power and
hence richer representations. In this work, we investigate
the benefits of the curved space for analyzing anomalous,
open-set, or out-of-distribution (OOD) objects in data. This
is achieved by considering embeddings via three geometry
constraints, namely, spherical geometry (with positive curvature),
hyperbolic geometry (with negative curvature), or mixed
geometry (with both positive and negative curvatures). Three
geometric constraints can be chosen interchangeably in a unified
design, given the task at hand. Tailored for the embeddings in
the curved space, we also formulate functions to compute the
anomaly score. Two types of geometric modules (i.e., geometric-
in-one (GiO) and geometric-in-two (GiT) models) are proposed
to plug in the original Euclidean classifier, and anomaly scores
are computed from the curved embeddings. We evaluate the
resulting designs under a diverse set of visual recognition
scenarios, including image detection (multiclass OOD detection
and one-class anomaly detection) and segmentation (multiclass
anomaly segmentation and one-class anomaly segmentation). The
empirical results show the effectiveness of our proposal through
consistent improvement over various scenarios. The code is made
available at https://github.com/JHome1/GiO-GiT.
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I. INTRODUCTION

IN THIS article, we aim to leverage the curved geometry for
learning embeddings, which in return allows us to analyze

and identify anomalous, open-set, or out-of-distribution (OOD)
objects from normal, closed-set, or in-distribution (ID) input
data. Nonflat geometry has gained an increasing amount
of interest in various machine learning approaches due to
its intriguing properties in encoding the inherent geometry
or hidden structure information of the data [1], [2], [3],
[4], [5], [6]. For example, spherical spaces with constant
positive curvature show appealing properties along with
deep neural networks (DNNs) to encode samples resembling
the sphere [7], [8]. Hyperbolic spaces, featured with a
constant negative curvature, are shown to be rich in encoding
the underlying hierarchical structure in the data. Such a
property enables hyperbolic spaces to better discriminate
input samples [4]. Fig. 1 conceptualizes the distinctive
characteristics of Euclidean, spherical, and hyperbolic spaces
and highlights their disparities. Euclidean spaces with zero
curvature are familiar faces in DNNs [see Fig. 1(a)]. Spherical
geometry, as shown in Fig. 1(b), has been successfully
employed to encode directional data (i.e., samples where
the magnitude does not carry important information). The
Poincaré ball model for the hyperbolic spaces, as shown in
Fig. 1(c), provides a structure with constant negative curvature
to encode data.

Previous studies, such as [4], [11], and [12], show that
curved spaces can attain a superior performance gain over
the Euclidean space, especially for tasks relying on image
embeddings (e.g., zero-/few-shot learning or metric learning).
For example, in [12], by employing the similarity metric
in spherical embedding spaces, the model enhances its
discriminative ability in zero-shot classification for unknown
classes. In [4] and [13], hyperbolic spaces are shown to
have a better distribution across unknown classes, therefore
improving few-shot learning performance. Based on the
interpretations in Fig. 1, we infer that the curved geometric
embeddings exhibit enhanced discrimination due to the
following reasons.

1) In the spherical space, all points are constrained to lie
on the surface of a hypersphere, as shown in Fig. 1(b).
On the surface of the hypersphere, the embedding
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Fig. 1. Illustration of Euclidean space and curved spaces (i.e., spherical and hyperbolic spaces). (a) Euclidean space represents a flat space without curvature.
(b) In contrast, the spherical space restricts all points to lie on the surface of a hypersphere. (c) Hyperbolic space, represented by the Poincaré ball model,
makes points exist inside the ball, demonstrating its negatively curved nature. The transformation from Euclidean space to spherical or hyperbolic space can
be achieved through respective spherical or hyperbolic transformation, which project points onto the corresponding curved space.

Fig. 2. Illustration of the discrimination ability of curved spaces on
unknown data. We train two models using Euclidean and hyperbolic geometry
on miniImageNet dataset [9], following the few-shot learning protocol.
We randomly choose four unknown classes and plot the class embeddings
using t-SNE [10]. Each unknown class is represented by one color. From
this visualization, we can directly observe that within each unknown class,
embeddings in hyperbolic space (see the figure on the right) show a more
compact distribution than embeddings in Euclidean space (see the figure
on left). Moreover, it can be observed that hyperbolic embeddings exhibit
improved separations based on the discovered hierarchies. For instance,
when compared to the distribution of Euclidean embeddings, hyperbolic
embeddings show closer proximity between classes (i.e., the yellow-colored
“African hunting dog” and the green-colored “lion”) that belong to the same
superclass (i.e., “animal”). Conversely, hyperbolic embeddings of classes (i.e.,
the olive-colored “ant” and the purple-colored “bookshop”), which belong to
different superclasses (i.e., “insect” and “building”), are pulled further apart.

space is enforced to have a uniform distribution
across multiple classes, promoting a more unbiased
classification. Furthermore, scale-free analysis, the
inclusion of spherical spaces, e.g., via ℓ2 normalization
in a DNN, provides useful constraints for learning and
has been used with success in the majority of modern
neural structures [7], [8], [14].

2) As shown in Fig. 1(c), points in the hyperbolic space
lie inside the ball. The volume in a hyperbolic space
expands exponentially with dimensions. This enables us
to embed tree-like structures with less distortion (see
the green-colored triangle) and aids the discovery of
hierarchical relationships among samples. For instance,
as shown in Fig. 2 and compared to Euclidean
embeddings, the hyperbolic embeddings of “African
hunting dog” (yellow) and “lion” (green) are closer,
emphasizing their similarity at the superclass level (i.e.,
“animals”). Moreover, the hyperbolic embeddings of

“ant” (olive) and “bookshop” (purple) exhibit better
separation than Euclidean embeddings as they originate
from distinct superclasses, “insect” and “building.”
Learning such hierarchies will lead to success at the
inference.

With the appealing observations shown above, in this
article, we investigate the practice of using geometries with
fixed nonzero curvature in visual anomaly, open-set, or OOD
recognition tasks. For the purpose of realizing our idea,
a natural solution is to simply replace the existing Euclidean
classifier with one based on a curved geometry. This idea
is behind the design of our geometric-in-one (GiO) model.
In addition, we also find that the “divergence” between
Euclidean embeddings and curved embeddings can provide
a reliable indicator useful for anomaly, open-set, or OOD
identification. To benefit from this interesting observation,
we further develop a geometric-in-two (GiT) model. Having
multiple geometry-aware networks at our disposal, we further
present approaches for getting the anomaly score to identify
abnormal objects.

Our main objective is to show that geometry plays an
essential role in identifying anomalies. As such, we develop
a generic solution and incorporate it into various baselines in
our empirical study. The contributions of this work can be
summarized as follows.

1) We propose two types of lightweight curvature-aware
geometric networks for visual anomaly, open-set,
or OOD recognition. To the best of our knowledge,
this is the first attempt to adopt curved manifolds as
embedding spaces to distinguish normal/closed-set/ID
and anomalous/open-set/OOD data. In addition, multiple
curved spaces, including spherical, hyperbolic, and
mixed spaces, are studied.

2) Extensive experiments on a wide range of visual
anomaly, open-set, or OOD recognition tasks (e.g.,
multiclass OOD detection, one-class anomaly detec-
tion, multiclass anomaly segmentation, and one-class
anomaly segmentation) suggest that the proposed
technique leads to a substantial performance gain over
the Euclidean geometry.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Southeast University. Downloaded on September 16,2023 at 03:41:20 UTC from IEEE Xplore.  Restrictions apply. 



HONG et al.: CURVED GEOMETRIC NETWORKS FOR VISUAL ANOMALY RECOGNITION 3

II. RELATED WORK

A. Visual Anomaly Recognition

Three main approaches are developed for doing visual
anomaly (or open-set/OOD) recognition: confidence-,
generative-, and self-supervised-based methods. However,
a few works are learning features in non-Euclidean spaces.

1) Confidence-Based Method: It is well known that the
confidence from the softmax in a classifier helps to detect
OOD samples from ID samples since ID samples are
more likely to have a greater maximum softmax confidence
compared to ODD samples [15]. OOD detector for neural
network (ODIN) [16] applies temperature scaling to the
confidence vector and adds small perturbations to input
samples for more accurate OOD detection. Additional
confidence-based methods, which make use of the confidence,
have been studied in [17], [18], [19], [20], and [21].

2) Generative-Based Method: One of the generative-based
methods is to synthesize effective training samples to avoid the
DNNs becoming overconfident in their predictions [22], [23],
[24], [25], [26]. Another choice is to optimize features in the
latent space of an encoder–decoder network toward generating
a more general distribution [27], [28], [29], [30], [31] or a
more representative attention map [32], [33], [34].

3) Self-Supervised-Based Method: Self-supervised learning
techniques have been widely employed in anomaly recog-
nition. Ensemble leave-out classifier (ELOC) [35] trains
classifiers in a self-supervised manner by setting a subset
of training data as OOD data. One main idea behind the
self-learning method is to apply geometric transformations
(GTs) or augmentations on the input images and train a
multiclass model to discriminate such transformations (or
augmentations). Prediction of image rotation is used in
rotation network (RotNet) [36]. Jittered patches of an image
are classified in Patch-SVDD [37] for anomaly localization.
Another idea is to use contrastive learning for better visual
representations [38], [39], [40]. More works using self-
supervised learning are presented in [38], [41], [42], [43], [44],
[45], and [46].

Some other facts should be noted.
1) Confidence-based as well as self-supervised-based

methods mainly adopt “encoder–classifier” structures
and generative-based models with “encoder–decoder”
architectures. The proposed modules in our work are
best applied to an “encoder–classifier” rather than an
“encoder–decoder” structure.

2) Teacher–student structures have been utilized in anomaly
recognition problems [47], [48], [49], [50]. These
approaches demonstrate the effectiveness of leveraging
the discrepancy between the teacher and student
branches to identify and localize anomalies. In [49],
a pair of networks are employed for anomaly detection,
where the teacher network is pretrainedon ImageNet.
The discrepancy between multilevel layers is utilized to
compute anomaly scores. In the case of the local–global
net proposed in [50], a teacher–student architecture is
trained to compute local and global features. In the

inference, local and global features are compared to
compute the anomaly score.

3) Some approaches compute the anomaly score of
test samples by comparing their features with those
of training samples [37], [45]. In the Patch-SVDD
method [37], for instance, the anomaly scores of test
samples are obtained by calculating the L2 distance
between the features of the test and training samples.

B. Geometric Learning

Geometric learning has been studied extensively to encode
structured representations [51]. For example, the set has been
used to model order-invariant data (e.g., 3-D point clouds [52]
or video data [53]). Orthogonal constraints, i.e., subspaces,
are often used to encode set data [54], [55], for its potential
to be robust against illumination variations, background, and
so on. In vectorized representations, spherical or hyperbolic
spaces are also very effective for metric learning-related tasks.
In the spherical space, the similarity of representations is upper
bounded. Hence, such a space is particularly well-behaved
at learning a metric space [7], [56], [57]. As opposed to
the spherical space, tree-like data can be embedded in the
hyperbolic space for its intriguing property to capture the
hierarchical structure of the data [4], [11], [58]. To further
increase the discrimination power of the learned embeddings
in curved spaces, the kernel methods, which implicitly map the
geometric representation to a high or even infinite-dimensional
feature space, are studied for spherical embgedings [59] or
hyperbolic embeddings [13]. To fully model the structure
of the data, mixed-curved spaces are good candidates as
embedding spaces [14], [60].

III. PRELIMINARIES AND BACKGROUND

In this section, we will briefly introduce the preliminary
knowledge and background used in this article.

A. Notation

We use κ to denote the curvature of a manifold. In general,
a vectorized representation or an embedding can be embedded
in three types of manifolds: the Euclidean space ME ,
the spherical space MS , and the hyperbolic space MH ,
corresponding to κ = 0, κ > 0, and κ < 0, respectively.
Throughout this article, we call any space with κ ̸= 0, as a
curvature-aware space or a curved space. A mixed-curvature
manifold MM is a product space, consisting of a set of
different spaces [14], [60]. In our work, the mixed-curvature
manifold is defined asMM =M1 ×M2 ×M3 × · · · ×MN ,
in which we mix N different manifolds. For example, the
mixed-curvature manifoldMM =ME ×MS ×MH includes
a Euclidean space, a spherical space, and a hyperbolic space.

B. Spherical Geometry

The n-sphere with curvature κ > 0 is defined as

Sn−1
κ =

{
x ∈ Rn

: ∥x∥
2

= 1/κ
}

. (1)
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Fig. 3. General frameworks of the models and their training processes are depicted. (a) Baseline model follows an “encoder–classifier” structure. The
image encoder takes the input image I and encodes it into an embedding vector eE . The classifier, primarily composed of an FC layer, generates the
confidence vector for loss computation. We propose two models in our work: GiO and GiT. GiO and GiT differ from the baseline model in that they integrate
the GT and geometric FC layer into the classifier. In essence, while the baseline model follows an “encoder–classifier” structure, GiO and GiT adopt an
“encoder-geometric-classifier” structure. (b) In the GiO model, the original Euclidean FC layer is replaced with a geometric FC layer based on a curved
geometry. (c) GiT model adopts the geometric FC layer as the additional branch. In the training stage, we follow the setting that the training data do not
include any anomalous or OOD samples.

The mapping 0S : Rn
→ Sn−1

κ projects an embedding x ∈ Rn

generated by an image encoder to n-sphere as

xS = 0S(x) =
x

√
κ∥x∥

. (2)

The embedding xS indicates a point in the n-sphere,
satisfying the constraint in (1). In practice, the angular
mapping in the n-sphere, analogous to the linear mapping in
the Euclidean space, can be realized by a fully connected (FC)
layer with weight W. Let W = [w1, w2, . . . , w j , . . . , wC ],
where w j ∈ Sn−1

κ is the corresponding column, representing
the parameters of the classifier. The prediction associated
with the j th class for an embedding x is determined by w j .
We note that for x, w j ∈ Sn−1

κ , the term for the j th class,
lS(x, w j ) = ⟨x, w j ⟩, is indeed related to the geodesic distance
on Sn−1

κ ; hence, one can understand this term as a form of
the distance-based value. Here, we use the notation lS(x, W)

to show a vector obtained by applying the columns of W to
x ∈ Sn−1

κ .
For the spherical network, we compute the angular loss ℓS

based on B samples in one batch

ℓS = −
1
B

∑
i

log
exp

(
lS,yi

)∑
j exp

(
lS, j
) (3)

where lS, j is the j th element in lS(x, W) under the i th input
sample and x ∈ Sn−1

κ . Accordingly, lS,yi is the the yi th element
in lS(x, W) and yi indicates the label class to the i th input
sample.

C. Hyperbolic Geometry

In contrast to the n-sphere Sn−1
κ , the hyperbolic space

is a curved space with a constant negative curvature (i.e.,
κ < 0). The hyperbolic space offers an appealing property for
anomaly problems. Specifically, the volume in the hyperbolic
space increases exponentially. This allows the algorithm to
incorporate more embeddings of unknown objects, particularly

those closer to the origin, as the space expands from the
origin [4].

In this article, we employ the Poincaré ball [1], [4] to
model and work with the hyperbolic space. The n-dimensional
Poincaré ball, with curvature κ , is defined by the manifold

Hn
κ =

{
x ∈ Rn

: ∥x∥ < −1/κ
}
.1

To embed x ∈ Rn , obtained by an image encoder to the
Poincaré ball, we use the following transformation:

xH = 0H(x) =


x, if ∥x∥ ≤

1
|κ|

1 − ξ

|κ|

x
∥x∥

, else
(4)

where ξ > 0 is a small value to ensure numerical stability.
The embedding xH is a point in the Poincaré ball. To enable
the vector operations in the Poincaré ball, we make use of the
Möbius addition for x, y ∈ Hn

κ as

x ⊕κ y =

(
1 + 2|κ|⟨x, y⟩ + |κ|∥y∥

2
)
x +

(
1 − |κ|∥x∥

2
)
y

1 + 2|κ|⟨x, y⟩ + |κ|2∥x∥2∥y∥2 (5)

where ⟨, ⟩ is the inner product. The geodesic distance between
x, y ∈ Hn

κ is defined as

dGeo(x, y) =
2

√
|κ|

tanh−1
(√

|κ|∥ − x ⊕κ y∥

)
. (6)

One can also generalize the hyperbolic linear operation,
parameterized by W (e.g., the hyperbolic linear layer), in the
Poincaré ball [4]

W⊕κ
(x) :=

1
√

|κ|
tanh

(
∥Wx∥

∥x∥
tanh−1

(√
|κ|∥x∥

)) Wx
∥Wx∥

.

(7)

The proposed network contains the multiclass classification
layer. We employ the generalization of multiclass logistic
regression (MLR) to the hyperbolic spaces [4]. Following the

1In this case, the Riemannian metric is defined as gH
κ (x) = λ2

κ (x) · gE ,
where λκ (x) =

1
1+κ∥x∥2 , and gE is the Euclidean metric.
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work in [4], the formulation of the hyperbolic MLR for C
classes is given by:

lH (y = j |x)

∝ exp

(
λκ(x)∥W j∥

√
|κ|

sinh−1

(
2
√

|κ|⟨−p j ⊕κ x, W j ⟩(
1 − |κ| · ∥ − p j ⊕κ x∥2

)
∥W j∥

))
(8)

where j ∈ {1, 2, . . . , C}. Here, x ∈ Hn
κ is an embedding in the

hyperbolic space, and p j ∈ Hn
κ , W j ∈ Tpκ

Hn
κ\{0} are learnable

weights.

IV. APPROACH

Visual anomaly (or open-set/OOD) recognition aims to
identify abnormal (or open-set/OOD) samples from normal (or
closed-set/ID) samples. During the training process, as shown
in Fig. 3, only normal, closed-set, or ID data can be accessed.
For the evaluation stage, as shown in Fig. 4, both normal
(or ID) and anomalous (or OOD) inputs to be recognized
exist.

The pipeline of the baseline is shown in Fig. 3(a) for
the training phase and Fig. 4(a) for the inference phase.
Specifically, an image encoder first maps the input image
to a feature embedding eE , lying in a Euclidean space. The
following FC layer and Softmax function further predict the
probability belonging to each normal (or ID) class, denoted
by cE [see Fig. 3(a)]. In the evaluation process, to identify
whether the input image or pixel is an outlier (also known
as anomalous, open-set, or OOD data), one needs to define
the anomaly score AS ∈ [0, 1]. In this vanilla model
[see Fig. 4(a)], we follow the common practice in [15] to
define the anomaly score by leveraging the predication cE as
AS = 1 − max(cE ).

A curvature-aware geometric model indicates a model
where its classifier operates in a curved space MG , and
we term its classifier geometric classifier. Two curvature-
aware geometric models are presented in this section: GiO
and GiT, as shown in Fig. 3(b) and (c). Compared to the
baseline model, the curvature-aware geometric model has two
geometric layers, namely, GT and geometric FC layer. The
GT is to transform the Euclidean embedding eE computed by
an image encoder to the geometric embedding eG (see (2)
for the spherical geometry MS and (4) for the hyperbolic
geometry MH ). The geometric FC layer is a generalization
of the FC layer inMG (e.g., the angular linear layers inMS

or the hyperbolic linear layers in MH ). As shown in Fig. 3,
we learn geometric classifiers where embeddings extracted
from an image encoder are manipulated in the curved spaces.
During the inference phase, as shown in Fig. 4(b) and (c),
the geometric score z is initially obtained from the curved
embedding. In GiO, the variable z can be interpreted as the
distance value between the curved embedding point and the
reference point in the curved space. In GiT, z represents
the discrepancy between two embeddings originating from
different spaces. Subsequently, the anomaly score in our
geometric model is computed as AS = 1 − tanh(z). Since
z ∈ [0, +∞) is not constrained within the range of 0–1, the

function tanh(.) is employed to make sure that the anomaly
score AS falls between 0 and 1.

A. GiO Model

We first introduce a single-branch framework, i.e., the GiO
model. The GiO model [see Fig. 3(b)] is a natural modification
that replaces the Euclidean embeddings with curved geometry
embeddings. It provides a straightforward comparison to
justify the advantages of using curved geometry for anomaly
recognition. Specifically, as shown in Fig. 3(b), the image or
pixel embeddings can be obtained by applying the GT function
(i.e., (2) for MS and (4) for MH ) to the feature vectors
encoded by the image encoder. Then, the following geometric
classifier, realized by the geometric FC layer, is further used to
predict the class of its input. For example, the hyperbolic-in-
one (HiO) model refers to a network with a geometric classifier
in the hyperbolic space. Compared to the baseline model [see
Fig. 3(a)], the GiO model only modifies the embedding layer
and classifier without bringing extra parameters, thereby being
a cheap yet flexible solution.

In the GiO model, the geometric score zG ∈ {zS, zH , zM}

can be obtained from embedding eG . In our work, the
geometric score from the spherical manifold MS is defined
as

zS(eS) = max(lS(eS, W)) (9)

where eS ∈ Sn−1
κ . Experiments in [7] and [31] verified that

zS from MS is suitable for visual tasks under the open-set
protocol. Hence, we expect that zS could help in anomaly,
open-set, or OOD recognition. For the hyperbolic spaceMH ,
the geometric score is defined as

zH (eH ) = dGeo(eH , 0H ) (10)

where dGeo(eH , 0H ) is also known as the geodesic distance
between the point eH and the origin 0H , for eH , 0H ∈ Hn

κ .
The experiment of image-level OOD detection in [4] shows
the property of eH , and the hyperbolic embedding points of
OOD samples are closer to the origin. In the mixed-curvature
manifoldMM , the geometric score zM is formulated as

z2
M =

N∑
i

z2
M,i (11)

where there are N spaces in MM and zM,i is the
geometric score from the i th component space. For instance,
in MM =MS ×MH , z2

M = z2
S + z2

H . The GiO model with
MM = MS ×MH is actually a two-branch architecture.
We can even incorporate the Euclidean space into the mixed-
in-one (MiO) model. InMM =ME×MS×MH , we can have
z2

M = z2
E + z2

S + z2
H where the geometric score from Euclidean

space is zE = max(cE ) [15]. Table I lists the proposed
geometric networks, in conjunction with the geometry score,
in the GiO model.

Having the geometry score zG at our disposal, the anomaly
score is defined as AS = 1 − tanh(zG). A higher value of AS
indicates a higher probability that the input is coming from the
anomalous distribution. The purpose of tanh(·) is to normalize
zG to a value that is in the range of 0–1 [see Fig. 4(b)].
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Fig. 4. General frameworks of the models and their evaluation processes are depicted. In the evaluation stage, the model would process both normal (or
ID) and anomalous (or OOD) inputs. The geometric score zG is extracted from the curved embedding for anomaly score computation in the GiO model. For
the GiT model, the geometric score zEG is obtained via Euclidean and curved embeddings. During the evaluation process, GiO and GiT models use the less
parameters than the baseline. (a) Baseline model. (b) GiO model. (c) GiT model.

TABLE I
PROPOSED GEOMETRIC NETWORKS IN THE GIO MODEL AND THE GIT

MODEL. “ABB.,” “GEO. COMPONENTS,” AND “GEO. SCORE” INDICATE
“ABBREVIATION,” “GEOMETRY COMPONENTS,” AND “GEOMETRY

SCORE,” RESPECTIVELY

B. GiT Model

Several recent works [47], [48], [49], [50] develop the
dual-branch architecture and exploit the discrepancy between
features in separate classifiers for anomaly, open-set, or OOD
recognition. Motivated by this fact, we further introduce our
second framework, termed GiT, where a Euclidean classifier
and a geometric classifier are integrated after the image
encoder [see Fig. 3(c)]. In the GiT model, in parallel with
a branch of the Euclidean classifier, the other branch learns
the feature embedding in the curved space, and the following
geometric FC layer is used as a class predictor. The embedding
in the curved space MG is achieved by transforming eE

to eG via a GT function, as shown in Fig. 3(c). In such
a pipeline, the geometry-aware score zEG is defined as the
discrepancy between distributions of eE and eG , measured via
the Kullback–Leibler (KL) divergence, as follows:

zEG =

∑
i

pE,i log
pE,i

pG,i
(12)

where pE,i and pG,i are the i th element in pE and pG ,
respectively. Here, pE = softmax(eE ) and pG = softmax(eG).
The geometric score zEG is essentially the distribution
discrepancy between the learned embedding eE from ME

and eG from MG . We have three types of GiT models:

spherical-in-two (SiT), hyperbolic-in-two (HiT), and mixed-
in-two (MiT) models, and thereby, zEG ∈ {zE S, zE H , zE M}

where zE S , zE H , and zE M are from three models. The values
zE S and zE H can be easily calculated by (12). Inspired by (11),
we define zE M inMM as follows:

z2
E M =

N∑
i

z2
E M,i (13)

where N indicates the number of component spaces inMM .
For example, when MM = MS ×MH , the score metric
can be obtained by z2

E M = z2
E S + z2

E H . The GiT model with
MM =MS ×MH is actually a three-branch architecture.

Our experiments show that zEG is able to provide reliable
discrimination information for anomaly identification. We find
that similar to our GiO models, the anomaly score of GiT
models should be AS = 1 − tanh(zEG) [see Fig. 4(c)]. Table I
lists the networks and the geometry score in the GiT model.

C. Model Training

In the baseline model, as shown in Fig. 3(a), the Euclidean
classifier is optimized by a standard cross-entropy loss
function, as ℓ = ℓE (cE ). Similarly, we optimize the GiO model
using the confidence vector cG , predicted in its geometric
classifier with its own specific loss ℓ = ℓG(cG) [see Fig. 3(b)].
The loss functions for the spherical and hyperbolic geometric
networks are described in (3) and (8).

The GiT model, as shown in Fig. 3(c), is trained in a
multitask learning manner by optimizing a Euclidean classifier
and a geometric classifier, as ℓ = ℓE (cE )+ℓG(cG). To be more
specific, a shared image encoder encodes the input image in
a Euclidean space ME and the curved spaces MG . Then,
the following Euclidean classifier and geometric classifier are
optimized separately. In contrast to the well-studied student-
teacher models [48], [49], which aim to transfer the knowledge
from the teacher model to the student model, our GiT model
learns subbranches guided by its own spaces and objective
functions [see (3) and (8)].
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TABLE II
VISUAL ANOMALY TASKS WHERE WE EVALUATE THE PROPOSED GEOMETRIC MODELS

TABLE III

MULTICLASS OOD DETECTION ON CIFAR-10/CIFAR-100 [61] WITH DENSENET/WRN-28-10 IMAGE ENCODER. MIXED-GEOMETRY EMBEDDING IN
THE MIO/MIT MODEL INCLUDES SPHERICAL EMBEDDING AND HYPERBOLIC EMBEDDING. WE PROVIDE AVERAGING RESULTS OVER FIVE

MULTIPLE OOD DATASETS: TINC, TINR, LSUNC, LSUNR, AND iSUN. “*” INDICATES THAT THE RESULTS ARE OBTAINED VIA A
SELF-IMPLEMENTED NETWORK. THE CURVATURES OF SiO, SiT, HiO, HiT, MiO, AND MiT ARE SET TO 1.0, 1.0, −0.01, −1.0,

(1.0, −0.01), AND (1.0, −1.0), RESPECTIVELY

TABLE IV
MULTICLASS OOD DETECTION ON CIFAR-10/CIFAR-100 [61] WITH DENSENET/WRN-28-10 IMAGE ENCODER. WE PROVIDE AVERAGING RESULTS

OVER FIVE MULTIPLE OOD DATASETS: TINC, TINR, LSUNC, LSUNr, AND iSUN. “*” INDICATES THAT THE RESULTS ARE OBTAINED VIA
SELF-IMPLEMENTED NETWORKS. THE CURVATURE OF HiO IS SET TO −0.01

TABLE V

MULTICLASS OOD DETECTION ON CIFAR-100 [61] WITH DENSENET [62] AND WRN-28-10 [63] IMAGE ENCODERS. MIXED-GEOMETRY EMBEDDING
IN THE MIT MODEL COMBINES A SPHERICAL EMBEDDING AND HYPERBOLIC EMBEDDING. WE PROVIDE AVERAGING RESULTS OVER FOUR

MULTIPLE OOD DATASETS: TINc, TINr, LSUNc, AND LSUNr. THE CURVATURES OF SiT, HiT, AND MiT ARE SET TO 1.0, −0.001, AND
(1.0, −0.001), RESPECTIVELY

V. EXPERIMENTS

In this section, we evaluate our models on four visual
anomaly, open-set, or OOD tasks: 1) multiclass OOD detec-
tion; 2) one-class anomaly detection; 3) multiclass anomaly
segmentation; and 4) one-class anomaly segmentation. Table II

shows the difference between each task used in this article.
For simplicity, we use the following abbreviations for our
models: spherical-in-one (SiO), SiT, HiO, HiT, MiO, and MiT.
It is notable that such terms (e.g., SiO and SiT) indicate that
the curved geometric models apply the geometric classifiers
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TABLE VI
ONE-CLASS ANOMALY DETECTION ON CIFAR-10 [61]. IMAGE-LEVEL AUROC IN % IS GIVEN. classi INDICATES THE i TH CLASS. “EXTRA” INDICATES

UTILIZING EXTRA DATA FOR TRAINING (E.G., USING PRETRAINED MODELS ON IMAGENET [64]). “*” INDICATES THAT THE RESULTS ARE
OBTAINED VIA A SELF-IMPLEMENTED NETWORK. MIXED-GEOMETRY EMBEDDING IN THE MIT MODEL INCORPORATES BOTH THE

SPHERICAL EMBEDDING AND HYPERBOLIC EMBEDDING. ROTNET∗ , SiT, HiT, AND MiT ADOPT WRN-28-10 [63] AS IMAGE
ENCODER, WHILE CSI, SiT, HiT, AND MiT UTILIZE RESNET-18 [65]. THE CURVATURES OF SiT, HiT, AND MIT BASED

ON ROTNET∗ ARE SET TO 1.0, −0.005, AND (1.0, −0.005), RESPECTIVELY. THE CURVATURES OF SiT, HiT, AND MiT
BASED ON CSI ARE GIVEN AS 1.0, −0.01, AND (1.0, −0.01), RESPECTIVELY

TABLE VII
MULTICLASS ANOMALY SEGMENTATION ON STREETHAZARDS [19].

FPR (95% TPR), PIXEL-LEVEL AUROC, AND AUPR IN % ARE
GIVEN. THE METRIC STD OVER FIVE RUNS. THE RESULTS

OF AE, DROPOUT, AND MSP ARE PROVIDED IN [19]. THE
CURVATURES OF SiT, HiT, AND MiT BASED ON MSP ARE

SET TO 1.0, −0.01, AND (1.0, −0.01), RESPECTIVELY

compared to their corresponding baselines (see Table I for
more details). Metrics, including the false positive rate at
95% true positive rate (FPR at 95% TPR), the detection
error, the area under the receiver operating characteristics
(AUROC) [72], [73], and the area under the precision-recall
(AUPR) [74], [75], are measured. All results are averaged over
five independent trials.

For the experiments on multiclass OOD detection,
we train the geometric models for 300/300/100 epochs
using Hendrycks&Gimpel [15]/ODIN [16]/ELOC [35] as
the baselines, with a learning rate of 0.05/0.05/0.1. In the
experiments of one-class anomaly detection, the models based
on RotNet [36]/CSI [38] are trained for 100/1000 epochs with
learning rates of 0.01/0.1. For the multiclass segmentation
task, the models are trained for 30 epochs with a learning
rate of 0.02. In one-class anomaly segmentation, the models
are trained for 1200 epochs with a learning rate of 1e−4. The
values of curvatures for the GiO/GiT models are provided in
the captions of Tables III–IX.

A. Multiclass OOD Detection

The objective of multiclass OOD detection, traditionally
termed OOD detection, is to identify whether a sample is
from the given dataset with multiple ID classes. The model

is trained on the ID dataset only. In this setting, CIFAR-10
and CIFAR-100 [61] are chosen as ID datasets, while the
cropped TinyImageNet (TINc), the resized TinyImageNet
(TINr) [64], the cropped LSUN (LSUNc), the resized LSUN
(LSUNr) [76], and iSUN [77] are OOD datasets. We first adopt
the Hendrycks&Gimpel model [15] as the baseline network.
Both Dense-BC [62] and WRN-28-10 [63] are used as image
encoders. As shown in Table III, we can observe that the
HiO model attains the overall best accuracy. In addition, our
models, except the SiO model, bring the performance gain over
the baselines, showing the superiority of curved geometries
as embedding spaces. It is also notable that our models are
light. For example, the HiT model surpasses the baseline by
4.2% with WRN-28-10 on CIFAR-100, while it only uses an
extra 0.02 M parameters, i.e., from 146.05 M to 146.07 M.
Moreover, in most cases, the performance of the mixed-
curvature model, MiO or MiT, is in between that of hyperbolic
and spherical models. Besides the Hendrycks&Gimpel model,
we also use ODIN [16] as the baseline where we employ the
input preprocessing at the test phase. The results of geometric
models that adopt ODIN as the baseline are reported in
Table IV. From Table III, we identify HiO as the model,
which obtains the best performance. Hence, we choose and test
HiO for ODIN. Except for the experiment of WRN-28-10 on
CIFAR-100, we see that HiO boosts the performance against
the baseline.

In addition to Hendrycks&Gimpel and ODIN models,
we also incorporate the proposed geometric classifier into
advanced baselines. In this study, we employ the ELOC [35]
as the baseline network. As shown in Table V, the HiT
model performs the best over two image encoders. Specifically,
it surpasses the baseline by 0.77%/1.60% in AUROC under
Dense-BC/WRN-28-10. Similar to the results shown in
Table III, the performance of the MiT model is in between SiT
and HiT with Dense-BC on CIFAR-100, but it unexpectedly
becomes the worst with WRN-28-10.

B. One-Class Anomaly Detection

In the one-class anomaly (or open-set) detection setting,
only one class is set as the normal class, while other classes
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TABLE VIII

ONE-CLASS ANOMALY SEGMENTATION (ANOMALY LOCALIZATION) ON MVTECAD [68]. PIXEL-LEVEL AUROC IN % IS GIVEN. “EXTRA” INDICATES
UTILIZING EXTRA DATA FOR TRAINING (E.G., USING PRETRAINED MODELS ON IMAGENET [64]). “CPR” INDICATES USING THE COMPARISON

WITH THE TRAINING DATA FOR ANOMALY SCORE COMPUTATION DURING EVALUATION. THE RESULTS OF AVID AND ANOGAN/AE ARE
PROVIDED IN [32] AND [49], RESPECTIVELY. MIXED-GEOMETRY EMBEDDING IN THE MiO/MiT MODEL INCLUDES SPHERICAL

EMBEDDING AND HYPERBOLIC EMBEDDING. THE CURVATURES OF SiO, HiO, MiO, SiT, HiT, AND MiT ARE SET TO 1.0,
−0.01, (1.0, −0.01), 1.0, −1.0, AND (1.0, −1.0), RESPECTIVELY. THE MODEL SIZES OF PATCH-SVDD† , SiO, HiO,

MiO, SiT, HiT, AND MiT ARE 1.72 M, 1.72 M, 1.72 M, 1.82 M, 1.82 M, 1.83 M, AND 1.93 M, RESPECTIVELY

are used as abnormal classes. The common practice of
creating discriminative representations under this setting is
modeled as a multiclass classification problem using the self-
supervised learning (SSL) algorithms [36], [38], [38], [41],
[42], [43]. In this task, we evaluate our models on the one-
class CIFAR-10 dataset [61].

Our geometric classifier is built on RotNet [36] and
CSI [38]. RotNet predicts the rotation angles as supervision for
SSL. Following the setting in [36], we set the rotation angles
to 0◦, 90◦, 180◦, and 270◦. A 4-D classifier that predicts the
angle of rotation is applied to the input image. CSI adopts
the contrastive learning scheme, which contrasts the negative
samples coming from the data augmentation. The results are
shown in Table VI. We can observe that either of our models
can improve the baselines, showing that embedding in curved
spaces indeed benefits the discrimination of data embedding.
For example, in RotNet, the method with mixed-curvature
geometry, MiT, attains the best performance improvement,
e.g., 1.53%, and outperforms the SiT and HiT models.
It verifies that mixed-curvature geometry indeed benefits from
the advantages of both spherical geometry and hyperbolic
geometry. In CSI [38], as a strong baseline, our models again
bring a performance gain, and the MiT method achieves the
best average performance, revealing that our models generalize
and are effective.

C. Multiclass Anomaly Segmentation

In contrast to multiclass OOD detection, which recognizes
the OOD samples at the image level, multiclass anomaly
(or open-set) segmentation is required to predict anomalous
objects at the pixel level. Following [19] and [25],
we evaluate this task using the StreetHazards dataset [19].
The Hendrycks&Gimpel model [15] with maximum softmax
probability (MSP) is adopted as the baseline. We report the
results in Table VII. As suggested in Table VII, this task
also benefits the most from the mixed-curvature geometry
(MiT), again showing that multiple geometries are essential
to learning discriminative embeddings.

D. One-Class Anomaly Segmentation

One-class anomaly segmentation, also known as anomaly
localization, aims to identify whether the input pixel is
an anomalous pixel or not [33], [68]. In contrast to the
multiclass anomaly segmentation, the training samples in one-
class anomaly segmentation are drawn from only one class of
the dataset.

We verify the effectiveness of our models on the MVTecAD
dataset [68] and adopt the SOTA model Patch-SVDD [37]
as a baseline without using extra data. A possible limitation
of Patch-SVDD is that the computation of the anomaly
scores AS for inference depends to a great extent on the
comparison with training samples. To simplify the evaluation
process, we calculate the anomaly score directly from its
normalized classifier’s value without utilizing any training
data (denoted by Patch-SVDD†). We then plug our geometric
models on top of Patch-SVDD†. The results are reported
in Table VIII. As suggested in Table VIII, all geometric
models, except the SiO model, boost the performance of
the baseline, and the mixed-curvature geometric model, MiT,
performs the best. It gains 17.55% improvement. In this task,
the dual-branch architecture (i.e., SiT/HiT/MiT) consistently
outperforms the single-branch model (i.e., SiO/HiO/MiO).
Along with a considerable improvement, our proposal is also
cheap. For example, the SiT improves the baseline by a margin
of 16.41%, while it only brings extra 0.1 M parameters, i.e.,
1.82 M versus 1.72 M, again showing the benefits from curved
geometric embeddings.

The idea of Patch-SVDD† is to evaluate our method on a
toy example to illustrate the advantage of curved geometries.
However, after we remove the comparison process with
training images from Patch-SVDD, we find its identification
performance significantly drops. To show the full potential
of our design in conjunction with the original Patch-SVDD,
we employ our geometric model over the original Patch-
SVDD where training images are considered for calculating
the anomaly score. As shown in Table IX, the accuracy
of Patch-SVDD on MVTecAD is boosted from 95.7% to
96.5%/96.5%/96.7% once using SiT/HiT/MiT. We follow
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TABLE IX
ONE-CLASS ANOMALY SEGMENTATION (ANOMALY LOCALIZATION) ON MVTECAD [68]. PIXEL-LEVEL AUROC IN % IS GIVEN. “EXTRA” INDICATES

UTILIZING EXTRA DATA FOR TRAINING (E.G., USING PRETRAINED MODELS ON IMAGENET [64]). “CPR” INDICATES USING THE COMPARISON
WITH THE TRAINING DATA FOR ANOMALY SCORE COMPUTATION DURING EVALUATION. THE RESULTS OF LSA ARE PROVIDED IN [32].

MIXED-GEOMETRY EMBEDDING IN THE MiT MODEL INCLUDES SPHERICAL EMBEDDING AND HYPERBOLIC EMBEDDING. THE
CURVATURES OF SiT, HiT, AND MiT ARE SET TO 1.0, −1.0, AND (1.0, −1.0), RESPECTIVELY

TABLE X
MULTICLASS ANOMALY SEGMENTATION ON MVTECAD [68]. PIXEL-LEVEL AUROC IN % IS GIVEN. MIXED-GEOMETRY EMBEDDING

IN THE MIT MODEL INCLUDES SPHERICAL EMBEDDING AND HYPERBOLIC EMBEDDING. THE CURVATURES OF SiT, HiT, AND MiT
ARE SET TO 1.0, −1.0, AND (1.0, −1.0), RESPECTIVELY

the anomaly score computation of the original Patch-SVDD
except for replacing the patch’s embedding with the geometric
score zEG .

As described in Section V-C, the multiclass setting allows
training data from multiple classes. We utilize this multiclass
data to train PatchSVDD† and the proposed geometric models
on the MVTecAD dataset [68]. Consistent with the approach
outlined in [79], we do not employ class label information. The
results, presented in Table X, demonstrate the clear superiority
of the geometric approaches over the baseline model.

E. Analysis

In this section, we aim to provide studies to analyze the
superiority of our design.

1) Performance: We learn from empirical observations
in Sections V-A–V-D that the curved spaces are able to
consistently provide reliable information for anomaly, open-
set, or OOD recognition. In most cases, our curvature-aware
geometric networks clearly outperform Euclidean networks.
One possible explanation is that the geometric representations
benefit particular problems. For example, as we discussed
in Section I, hyperbolic geometry is good at encoding
hierarchical structures inside the data. The datasets we test
include hierarchical information to some extent. For instance,
the CIFAR dataset includes ten superclasses and ten subclasses
under each superclass. The 15 classes of MVTecAD can
be categorized into two main supercategories, “object” and
“texture.” Hence, the hyperbolic space takes effect.

2) Mixed Geometry: Another interesting fact has been
observed is that the mixed-curvature geometry beats its
component single-curvature geometries in several cases:
MiT based on RotNet∗/CSI of one-class anomaly detection,
MiT based on MSP of multiclass anomaly segmentation,
and MiT based on Patch-SVDD† of one-class anomaly
segmentation in Tables VI–VIII, respectively. In some cases,

TABLE XI
ABLATION STUDY: MULTICLASS OOD DETECTION. IMAGE-LEVEL

AUROC IN % IS GIVEN. DIFFERENT CASES ARE EVALUATED
ON CIFAR-10 [61] TO VERIFY THE INTERACTIONS BETWEEN

HYPERBOLIC OR SPHERICAL AND EUCLIDEAN SPACES

the mixed-curvature geometry has a balanced performance.
For example, in the task of multiclass OOD detection, there
exists a significant performance gap between hyperbolic and
spherical geometries, as evidenced by SiO versus HiO. Thus,
the mixed space MiO might be expected to have an average
performance.

3) Interactions Among Geometries: The GiT model
requires meanwhile learning two embeddings (e.g.,
a Euclidean eE , and a hyperbolic eH or spherical
embedding eS). We observe that it happens in the interactions
between different geometric components. For instance,
in multiclass OOD detection (see Table III), eE could enrich
eS (SiO versus SiT); however, for eH , it has less or even
negative impact (HiO versus HiT). To further understand the
influence, we analyzed the experiments of WRN-28-10 on
CIFAR-10 where we separately test eE and eH (or eS) in
HiT (or SiT). Results in Table XI suggest the aforementioned
point (HiO versus eH in HiT and SiO versus eS in SiT).

4) Curvature: The curvature κ is the only hyperparameter
in the proposed curvature-aware geometric networks. The
study of one-class anomaly segmentation of HiT based on
Patch-SVDD† in Table XII suggests that κ clearly has an
impact on anomaly recognition performance. Table XII shows
that for each category, there exists an optimal curvature value κ

that leads to the best performance. Deviating from this optimal
value results in a decrease in performance.
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Fig. 5. Visualization: multiclass OOD detection. Density distributions of max(cE ), tanh(zS), tanh(zE S), tanh(zH ), and tanh(zE H ) of Hendrycks&Gimpel,
SiO, SiT, HiO, and HiT models with Dense-BC on CIFAR10→TINc are provided. The obtained AUROC for these five models are 94.8%, 94.7%, 98.1%,
98.7%, and 96.0%. More corresponding results can be referred to in Table III.

Fig. 6. Visualization: one-class anomaly detection. Density distribution of
anomaly score AS(zE H ) of HiT based on RotNet∗ on CIFAR-10 [61] is
visualized. We choose cases where class1, class5, or class9 is taken as the
normal class. The distribution of one case is shown in one column. More
corresponding results can be referred to in Table VI.

5) Method Choice: Our comprehensive empirical study
suggests that a single definitive conclusion cannot be made.
This is in line with observations made in recent works. For
example, in [14], the best geometry choice depends on the task.
Our study clearly shows that curved geometry is beneficial
in capturing the geometry of data, contributing tangibly to
identifying anomalies in data. Specifically, our empirical study
suggests that the preferred model for each task is shown
as follows—multiclass OOD detection: HiO/HiT; multiclass
anomaly segmentation: MiT; one-class anomaly detection:
MiT; and one-class anomaly segmentation: MiT. If one model
should be chosen in all instances, then we will opt for MiT as
the potential model for the visual anomaly recognition tasks.

F. Visualization

In this section, we qualitatively study our method in image-
level classification task and pixel-level segmentation task,
to understand why our method can bring performance gain
over the baseline model.

1) Image-Level Classification: In this work, we particularly
study whether the geometric score zG and zEG from the curved

TABLE XII
ABLATION STUDY: ONE-CLASS ANOMALY SEGMENTATION (ANOMALY

LOCALIZATION). PIXEL-LEVEL AUROC IN % IS GIVEN. DIFFERENT
FIXED CURVATURES ON MVTECAD [68] ARE EVALUATED. FOR

EACH CATEGORY, DIFFERENT CURVATURES BRING ABOUT
DIFFERENT PERFORMANCES. ALSO, THE OPTIMAL CURVA-

TURE CHOICE IS NOT CONSISTENT AMONG
DIFFERENT CATEGORIES

Fig. 7. Visualization: one-class anomaly detection. Examples with anomaly
scores AS computed by RotNet∗, HiT, and MiT are provided (see the top).
In addition, AUROC curves along the training epoch are plotted in the
bottom.

embedding spaces can provide more useful information than
the confidence vector cE from the Euclidean space in distin-
guishing normal (or closed-set/ID) and abnormal (or open-
set/OOD) objects. We visualize the distribution of max(cE ),
tanh(zS), tanh(zE S), tanh(zH ), and tanh(zE H ) on multiclass
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Fig. 8. Visualization: one-class anomaly segmentation (anomaly localization).
The heatmaps of anomaly score AS(cE ), AS(zE S), AS(zE H ), and AS(zE M )

of Patch-SVDD†, SiT, HiT, and MiT on MVTecAD [68] are visualized.
We provide examples from “bottle,” “metal nut,” “tile,” and “grid.” More
corresponding results can be found in Table VIII. In addition, for the category
“bottle,” AUROC curves of different models along the training epoch are
plotted in the bottom.

OOD detection over CIFAR-10 (CIFAR10→TINc) in Fig. 5.
As shown in Fig. 5, the curved embedding spaces help to
better separate ID and OOD distributions. The distribution of
anomaly score AS(zE H ) of one-class anomaly detection on
one-class CIFAR-10 is visualized in Fig. 6. The visualization
shows that zE H provides reliable information for distinguish-
ing the normal one-class and the abnormal classes. We present
some examples in Fig. 7 to verify the performance differences
among models, where we compare RotNet∗/HiT/MiT on
Class 2 as a normal class. The anomaly scores AS in
the top figure show different models that have different
capacities to recognize abnormal classes. Also, the AUROC
curve suggests substantial improvements led by the curved
geometries.

2) Pixel-Level Segmentation: From experiments, we find
that besides image-level tasks, curved spaces as embedding
spaces do help in pixel-level anomaly tasks. In Fig. 8,
we show examples in which we visualize the anomaly score
AS of Patch-SVDD†, SiT, HiT, and MiT on MVTecAD [68].
As shown in Fig. 8, zEG fromMG outperforms cE fromME

in identifying anomalous pixels.

VI. CONCLUSION

In this article, we study the potential use and benefit of
employing curved spaces for the purpose of visual anomaly,
open-set, or OOD recognition tasks. Our idea is inspired by
the observation that curved embedding spaces help better
represent “unknown” data in low-shot problems. Our work
proposes two novel geometric networks, GiO and GiT,
for the visual anomaly data analysis. In each geometric
model, we fully study the potential of different geometry
constraints. To the best of our knowledge, our curvature-
aware geometric networks are the first attempt to employ
curved geometries in visual anomaly, open-set, or OOD
recognition. Based on extensive experiments, we confirm
that more distinct representations between normal (or closed-
set/ID) and anomalous (or open-set/OOD) samples can be
learned using curved spaces, clearly showing the benefits
of the curved spaces. We hope that this work can inspire
researchers to explore curved geometries further in other
domains.

While the proposed geometric modules successfully
enhance performance, their applicability is currently limited
to baselines employing the “encoder–classifier” structure.
Furthermore, the fixed curvature of these designs does
not guarantee the optimal performance. To address these
limitations, future research could explore the integration
of curved embeddings into generative-based models with
“encoder–decoder” structures. In addition, efforts can be
directed toward developing adaptive-curvature designs to
achieve the optimal performance.
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