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TSGB: Target-Selective Gradient Backprop
for Probing CNN Visual Saliency
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Abstract— The explanation for deep neural networks has
drawn extensive attention in the deep learning community
over the past few years. In this work, we study the visual
saliency, a.k.a. visual explanation, to interpret convolutional
neural networks. Compared to iteration based saliency methods,
single backward pass based saliency methods benefit from
faster speed, and they are widely used in downstream visual
tasks. Thus, we focus on single backward pass based meth-
ods. However, existing methods in this category struggle to
successfully produce fine-grained saliency maps concentrating
on specific target classes. That said, producing faithful saliency
maps satisfying both target-selectiveness and fine-grainedness
using a single backward pass is a challenging problem in
the field. To mitigate this problem, we revisit the gradient
flow inside the network, and find that the entangled semantics
and original weights may disturb the propagation of target-
relevant saliency. Inspired by those observations, we propose
a novel visual saliency method, termed Target-Selective Gradi-
ent Backprop (TSGB), which leverages rectification operations
to effectively emphasize target classes and further efficiently
propagate the saliency to the image space, thereby generating
target-selective and fine-grained saliency maps. The proposed
TSGB consists of two components, namely, TSGB-Conv and
TSGB-FC, which rectify the gradients for convolutional layers
and fully-connected layers, respectively. Extensive qualitative
and quantitative experiments on the ImageNet and Pascal VOC
datasets show that the proposed method achieves more accurate
and reliable results than the other competitive methods. Code is
available at https://github.com/123fxdx/CNNvisualizationTSGB

Index Terms— Model interpretability, explanation, saliency
map, CNN visualization.

I. INTRODUCTION

IN RECENT years, deep convolutional neural net-
works (CNNs) have revolutionized various computer vision
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tasks, including object classification [1], [2], semantic segmen-
tation [3], [4], low-level image processing [5], etc. However,
human’s knowledge on how deep models make decisions
is still limited, which affects the trustworthiness of such
a “Black Box” in the deep learning community. Moreover,
this trustworthiness issue limits the development of real-
world applications, e.g., autonomous driving [6] and medical
diagnoses [7].

To interpret the working mechanism of deep neural net-
works, some explanation methods [8]–[12] have been devel-
oped to help humans understand what we can trust and how
we can improve the networks. This paper studies the visual
saliency [13], [14], w.r.t. the target classes, to explain how
CNNs make decisions for given input images. The visual
saliency, a.k.a. visualization, or visual explanation, aims to
highlight important features, which highly contribute to the
network predictions. In addition, visual saliency is also a
useful technique for some downstream tasks, e.g., weakly-
supervised vision [15], [16], person re-identification [17]–[19],
knowledge distillation [20], etc.

In general, iteration based methods and single backward
pass based methods are two dominant groups of methods to
probe the visual saliency. Iteration based methods can localize
the important regions in images by conducting iterative feed-
forwards or backwards [21]–[25]. Such an approach is time-
consuming, and it may introduce adversarial noise to saliency
maps [22]. In contrast, single backward pass based methods
offer the advantage of being computationally efficient, without
introducing adversarial noise. To benefit from these properties,
this work focuses on the single backward pass based method
to study the visual saliency.

Among single backward pass based methods, many works,
e.g., GradBP [13], GuidedBP [26], and FullGrad [27], have
been proposed to exploit the gradient to generate saliency
maps, where dominant objects of input images are highlighted.
However, such methods often fail to focus on the target class,
leading to inferior results w.r.t. the target category of interest.
As shown in Fig. 1, GuidedBP produces two similar saliency
maps, which cannot focus on the target class. Assume an
extreme situation: an explanatory result for a selected target
turns out target-agnostic, which is meaningless for the explana-
tory work. Other works, e.g., EBP [28] and GradCAM [29],
attempt to leverage the top-down relevance or the weighted
activation maps to produce class-discriminative explanations.
However, they fail to backpropagate the saliency to the
input image space, thereby resulting in coarse saliency maps.
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Fig. 1. Comparison of saliency maps w.r.t. target-selectiveness for the
predictions of “bull mastiff” and “tiger cat”. GuidedBP [13] produces two
similar saliency maps, while the proposed TSGB produces the discriminative
saliency maps.

Fig. 2. Comparison of saliency maps w.r.t. fine-grainedness for the
predictions of two cases of diabetic retinopathy. GradCAM [29] produces two
coarse saliency maps, while the proposed TSGB can produce the fine-grained
saliency maps.

Such coarse explanations are inadequate when fine-grained
localization becomes a concern. For example, in the domain
of medical image predictions, the fine-grained explanations are
essential to discriminate the fine biological tissues [14], [30].
As shown in Fig. 2, GradCAM produces two coarse saliency
maps, which cannot reveal the fine-grained patterns. Although
many efforts have been made to study single backward
pass based methods, developing an explanation approach that
satisfies both class-level target-selectiveness and pixel-level
fine-grainedness still needs further investigation.

In this paper, we attempt to address this challenging
problem by taking a step back and rethinking the disci-
pline of gradients inside neural networks. As noticed in the
literature [31], [32], the network nodes in the intermediate
layers may couple different semantic concepts. Interestingly,
we find that even the final hidden layer before the out-
put/prediction layer may contain entangled semantics. Such
entangled nodes severely affect the target-selectiveness prop-
erty when propagating the target attribution to the lower layers
using gradients. On the other hand, we also observe that
the saliency maps can be disturbed by the gradients using
pre-trained parameters in convolutional layers. This impedes
the attribution passing to the bottom to obtain fine-grained
saliency maps.

Inspired by the above observations, we propose a novel
visual saliency method, termed Target-Selective Gradient
Backprop (TSGB), to generate target-specific and fine-grained
saliency maps, which can explain how CNNs make decisions.
The proposed TSGB consists of two modules, i.e., a target
selection module for fully-connected (FC) layers and a fine-
grained propagation module for convolutional (Conv.) layers.
The target selection module exploits the contributions of
sub-nodes to the target node, and emphasizes the negative
connections by the ratio of positive contributions to negative
contributions, which can disentangle the target class from
the irrelevant classes and background in features. The fine-
grained propagation module leverages the ratio of feature
responses between two consecutive layers to propagate the
visual saliency from the feature space to the image space.

The main contributions of this paper are summarized as
follows:

• We study the influence of entangled semantics and
original gradients on the backprop of visual saliency.
Based on our findings, we propose a novel visual saliency
method, i.e., TSGB, to explain CNNs’ decisions. To our
best knowledge, this is the first work to generate target-
selective and fine-grained saliency maps in a single
backward pass.

• We design a target selection module, i.e., TSGB-FC, for
the backprop of FC layers. TSGB-FC adaptively enhances
the negative connections inside the networks to make the
visual saliency effectively focus on the target class.

• We devise a fine-grained propagation module, i.e., TSGB-
Conv, for the backprop of Conv. layers and other
advanced layers. TSGB-Conv exploits the information of
feature maps rather than model parameters to efficiently
produce high-resolution saliency maps.

Extensive experiments show the superiority of the proposed
TSGB against the competitive methods in target-selectiveness,
fine-grainedness, running speed, explanatory generalization,
and faithfulness. Moreover, TSGB can be employed to diag-
nose the biases in the model and dataset. Furthermore, TSGB
can be used to help human interpret the CNN model trained for
medical diagnoses, and locate the critical biological structures.

The remainder of this paper is organized as follows: In
Section II, some related works are described. In Section III, the
factors disturbing the target-selectiveness and fine-grainedness
during gradients backprop are analyzed. Based on the analysis,
the proposed method, including the target selection module
and the fine-grained propagation module, is presented in
Section IV. In Section V, qualitative and quantitative experi-
ments are conducted on various tasks to validate our method
against the competitors. Conclusion and discussion are drawn
in Section VI.

II. RELATED WORK

A variety of saliency methods have been studied to interpret
the decisions made by CNNs. Those methods can be catego-
rized into two groups according to the number of processing
of feedforward and backward, namely, single backward pass
based methods as well as iteration based methods (i.e., multi-
ple feedforward and backward pass based methods). We first
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focus on discussing three kinds of single backward pass based
methods in Section II-A. We then review several iteration
based methods in Section II-B.

A. Single Backward Pass-Based Methods

1) Gradient Related Methods: GradBP [13] is one of the
pioneering works for exploring visual saliency, which com-
putes the gradient of the class score w.r.t. the input image to
visualize the importance heatmap. Thereafter, GuidedBP [26]
and Deconvolution [21] modify the backpropagated gradients,
which makes the saliency maps sharper and clearer. Note that
their explanation results fail to concentrate on the selected
target [29], [33]. As the most recent work, FullGrad [27]
improves the saliency maps by considering the multi-layer
gradients aggregation.

2) Relevance Related Methods: Layer-wise Relevance
Propagation [34] and Deep Taylor decomposition [35] explain
the networks by decomposing the contribution of the target
layer by layer. These methods pay attention to extensive exist-
ing objects, similar to [26]. Excitation Backprop (EBP) [28]
uses the contrastive marginal winning probability to propagate
the top-down attention. DeepLIFT [36] assigns the attribut-
ion by comparing the difference between the input and the
reference data. CNN Fixation [8] measures the contributions
between a pair of consecutive layers to uncover the pixel
coordinates of saliency regions.

3) Activation Related Methods: CAM [12] and the gener-
alized version GradCAM [29] utilize the gradient to weigh
the feature maps to localize the important regions. This type
of method is still the optimal one as noted in [37]. Guided
GradCAM [29] ensembles GuidedBP and GradCAM, which
actually needs more than one backward pass, and its target-
selectiveness almost depends on GradCAM.

Despite that these single backward pass based methods
are advanced in visual saliency, their explanatory results
cannot satisfy the properties of target-selectiveness and fine-
grainedness simultaneously.

B. Iteration-Based Methods

Another type of visual saliency method is based on itera-
tions. Perturbation related methods, such as Occlusion [21],
Meaningful Perturbation [22], RISE [23] and LIME [24],
evaluate the output scores by occluding the input iteratively,
which takes much running time and it is possible to introduce
adversarial noise. Most recently, Score-CAM [38] masks
the input according to the intermediate activation maps and
repeatedly performs feedforwards N times (i.e., the number of
activation maps) to obtain the importance scores. Optimization
related methods, including Feedback [39] and FGVis [30], add
the complex switch structure into the network and iteratively
optimize the objective function to achieve the saliency maps.
Some integration related methods, such as SmoothGrad [40],
IntegratedGrad [41], and Integrated Grad-CAM [42], can be
regarded as the ensembles over single propagation methods.
We can also take advantages of these ensembles to improve our
method. These iteration based methods are time-consuming
and they do not achieve the optimal performance.

Fig. 3. Analysis of network nodes with entangled semantics. In each test,
a feedforward is performed to obtain the node response. Then the saliency is
backpropagated from the node to the top Conv. layer. Note that in (d), the
backprop generates a blank map because of an inactivated state of the node,
but we retain the negative response value for a better understanding.

Compared to iteration based methods, single backward pass
based methods run faster, and they are less likely to introduce
the adversarial noise. Hence, we focus on investigating the
single backward pass based visual saliency. Unlike all of these
methods, our method rectifies the gradient backprop, which
satisfies both the target-selectiveness and fine-graininess in a
high-speed manner.

III. ANALYSIS

During the procedure of generating the visual saliency, what
exactly affects the selectiveness of the target in saliency maps?
What disturbs the visual attribution when backpropagating
saliency maps from the top layer to the low layer and
what makes the visualized results rough rather than fine-
grained? Driven by these two crucial questions, we attempt to
explore the problem by revisiting the discipline of gradients
inside the networks, as gradients indeed contain inherent and
fundamental properties of the networks and they have been
employed by many works [13], [26], [27], [29], [40], [41] for
explanations.

A. Entangled Semantics in the FC Layer

In the following, we take the VGG16 model as an example.
As shown in Fig. 4(a), one may intuitively think that the
positive contribution nodes (with positive connections) to
an output node “tiger cat” should encode the “cat” related
semantic information, e.g., the cat head, the cat tail, etc.
However, in practice, when testing on a positive contribution
node (Fig. 3(a, b)), i.e., the 3258-th node in the input of
the FC3 layer, both “dog head” and “cat head” can activate
the node. Meanwhile, the saliency regions with corresponding
semantics are produced by the backprop from the node.
Thus we naturally consider that positive contribution nodes
encode entangled semantics, e.g., the “animal head”, the range
of which is even broader than that of the output node’s
semantics (Fig. 4(a)). When attributing the target class to the
lower layers, passing gradients through these entangled nodes
severely affects the target selection, as shown in Fig. 5(a)
“Pool5”.
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Fig. 4. An example of explanation for network nodes. The positive and
negative relevance to the target are respectively marked in the red and blue
colors1. An even number of negative connections make a positive contribution,
depicted in the red dotted arrow.

On the other hand, a negative contribution node, i.e., the
2159-th node in the input of the FC3 layer, is further tested,
as illustrated in Fig. 3(c, d). We observe that the node’s
response value is negative for a cat being the input, whereas
it is positive for a dog and background being the input. Thus,
this node may encode the “non-cat” information. This suggests
that the negative contribution is also important to help the
network make a right decision. Furthermore, we surprisingly
find that the negative contribution nodes in the FC3 layer
contain the class information, as shown in Fig. 4. Specifically,
using all final negative contribution nodes can result in a class-
discriminative saliency map (Fig. 4(b)), which concentrates
on the target and suppresses the background. The reasonable
explanation is the transformation of gathering the connections
with negative signs (i.e., even number of negatives make a
positive). For example, the “cat head” is negatively relevant
to the “non-cat” and the “non-cat” is negatively relevant to the
“cat”, leading that the “cat head” is positively relevant to the
“cat” (Fig. 4(a)).

B. Backprop Noise in the Conv. Layer

As illustrated in Fig. 5(a), the gradient backprop generates
a lot of noise, losing the target concentration. A similar result
is also observed in [29], [40]. One possible reason can be
explained as follows. The gradient can be regarded as an
approximation to the importance score assigned to per feature.
Conventionally, model parameters in the Conv. layers are
trained for the feedforward to extract features. Here, in the
procedure of the gradient backprop, directly using the original
parameters to compute the saliency in convolutions (i.e.,
deconvolution operations) may introduce biases. This is more
severe than the situation in the FC layers, because of dozens of
local perceptions inside the convolutions. Moreover, the biases
are accumulated layer by layer, leading to increasing noise

1This color setting can better distinguish the preserved negative values from
positive values in the analysis, which differs from that in the experiment.

Fig. 5. Comparison of backprops using the original gradient and the proposed
TSGB. Both propagations are from the target output node “tiger cat” down
to low layers. We input the same image in Fig. 4(b) in this test.

along with the gradient backprop, which prevents achieving a
fine-grained explanation.

IV. METHODOLOGY

Based on the above analysis, we propose a novel CNN
visual saliency method, i.e., target-selective gradient backprop
(TSGB), composed of a target selection module and a fine-
grained propagation module, as shown in Fig. 6. For a pre-
trained CNN model, the FC layers usually encode high-level
semantic features related to the target classes, while the Conv.
layers encode local features related to the object details.
Given this prior knowledge, we design two modules of TSGB
separately for the FC layers and Conv. layers. We will detail
these two modules in the following.

A. Target Selection Module

According to the analysis of “entangled semantics”, we pro-
pose a target selection module for the FC layers to select the
target and suppress the target-irrelevant background.

Let gl
i denote the target-selective gradient (TSG) of the i -th

node in the l-th layer, and gl+1
j denote the propagated gradient

of the j -th node in the (l+1)-th layer. Additionally, the normal
gradient g̃l

i = ∑
j wi j gl+1

j is given for reference. Firstly, given
an input image and a pre-trained CNN, we perform a forward
propagation and obtain the output scores before the softmax
function. We set the initial gradient of the target node c in the
output layer to 1, (i.e., gl+1

j=c = 1), and set the rest nodes’ initial

gradients to 0, (i.e., gl+1
j �=c = 0). Then, we compute the TSG

layer by layer in a top-down manner. In the final FC layer,
the TSG of the lower layer gl

i is calculated by enhancing the
negative connection:

gl
i =

∑

j

(w+
i j + E j (xl , w)w−

i j )gl+1
j , (1)

where wi j is the connection weight, and w+
i j = ReLU(wi j ),

w−
i j = wi j − w+

i j . Let xl
i denote the feature of the i -th node in

the l-th layer. The enhancement factor E j (xl, w) is obtained
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Fig. 6. The pipeline of the proposed target-selective gradient backprop (TSGB). Here, we use the VGG network as an example.

by the ratio of positive contributions to negative contributions:

E j (xl, w) = α

∑
i x l

i w
+
i j∑

i |xl
i w

−
i j |

. (2)

When the positive contribution is larger, or the nega-
tive contribution is smaller, the relative entangled strength∑

i x l
i w

+
i j /

∑
i |xl

i w
−
i j | will be larger, thereby leading to a

larger ratio. α is a positive scale coefficient, which adjusts
the enhancement ratio. It can be deduced that the ratio∑

i x l
i w

+
ic/

∑
i |xl

i w
−
ic| for the target c is always larger than

1 if the output of the target c is positive, as (
∑

i x l
i w

+
ic −∑

i |xl
i w

−
ic|) > 0. However, if the ratio is much larger than 1,

it may result in too strong suppression for the foreground
objects. Thus, we use the scale coefficient to slightly adjust
the enhancement ratio.

Note that we only rectify the gradients in the final FC
layer, and calculate the gradients with the original weights,
i.e., E = 1, for the other FC layers if there exist, such as
in the VGG net. This is because that the other FC layers’
information is integrated into the final layer’s input, which is
included in Eq. (2). Different from EBP [28] which only uses
positive weights, we make use of both positive and negative
weights for the other FC layers, as both of them are necessary
for the whole module to select the target and suppress the
background. For example, we use the proposed module to
produce the saliency map of “Pool5” layer, which is the input
layer of FC layer. As shown in Fig. 7, we can observe that
the target is gradually disentangled from the irrelevant classes
and background when the enhancement factor increases.

B. Fine-Grained Propagation Module

In this subsection, we further propose a fine-grained propa-
gation module for the Conv. layers to efficiently propagate the
saliency to the input image space.

In the Conv. layers, there exists the local perception over
each space location, which is different from the FC layers.

Fig. 7. The influence of the enhancement factor E . The saliency maps are
from the “Pool5” layer for the target “tiger cat” as in Fig. 5.

Considering this difference, we implement the backprop of
Conv. layers differently. The TSG of the lower layer gl

i in the
Conv. layers is devised as

gl
i = sign(xl

i )
∑

j

x l+1
j ui j

∑
i |xl

i ui j |
gl+1

j , (3)

where ui j = 1 if xl
i is inside the receptive field of xl+1

j ,
and 0 otherwise. The denominator is actually the convolution
operation with the kernel, each of whose elements is 1. sign(·)
is the sign function. We leverage the information of feature
maps rather than model parameters to propagate the saliency
map to the pixel space. This is because that feature maps are
dependent on the input instance, while model parameters are
input-agnostic. Feature maps are more accurate for assigning
the importance score per feature for a specific instance during
propagation. As Eq. (3) shows, given an identical input feature,
a larger output response indicates the stronger relevance of the
input feature to the output feature, leading to a larger TSG.
Note that although no model parameters are explicitly included
in the equation, the TSG is related to model parameters as well.
Actually, the computation of the feature xl+1

j is determined by
model parameters, which are implicitly contained in Eq. (3).

Eq. (3) can be rewritten in a tensor form. Let Xl ∈
R

M×Hl×Wl and Xl+1 ∈ R
N×Hl+1×Wl+1 denote the feature

maps in the l-th and (l + 1)-th layer, respectively. M and
N are the channel numbers of Xl and Xl+1, respectively.
Ul ∈ R

M×N×Kh ×Kw is a set of defined Conv. kernels with
the spatial size of Kh × Kw in the l-th layer (Ul has the same
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dimension as the original weight). Gl and Gl+1 are the TSG
maps in the l-th and (l + 1)-th layers, respectively. The m-th
map Gl

m ∈ R
Hl×Wl is formulated as

Gl
m = Xl+1 � Gl+1

|Xl | ∗ Ul
∗ (Ul

m)T � sign(Xl
m), (4)

where �, ∗, and | · | denote the element-wise multiplication,
convolution operation, and element-wise absolute value oper-
ation, respectively. In our formulation, all elements in U are
ones.

Let u ∈ R
Kh×Kw denote a single channel of Conv. kernel

in U. To speed up the computation, we further obtain the
following derivation from Eq. (4):

Gl
m = ( N∑

n=1

Xn
l+1 � Gn

l+1

|Xl | ∗ Ul

) ∗ (ul)T � sign(Xl
m)

=
∑N

n=1 Xn
l+1 � Gn

l+1

∑M
m=1 |Xl

m | ∗ ul
∗ (ul)T � sign(Xl

m). (5)

Note that in Eq. (4), each channel in Ul
m is equal, leading to

obtaining the first line in Eq. (5). Similarly, considering the
first line in Eq. (5), each channel in Ul is equal leading to each
channel in the result of |Xl | ∗ Ul equal, and thereby obtain-
ing the second line. By this transformation, the convolution
operation is turned from multiple channels to one channel.
Here, we further analyze the computation complexity of the
equation.

1) Computation Complexity: For convenience, we ignore
the difference between the multiplication and addition opera-
tions, as well as the difference of space scale between input
and output layers. The computation complexity of Eq. (4),
depends on the term |Xl | ∗ Ul , and thereby the computation
complexity is O(M × N × H × W × K × K ). On the other
hand, the computation complexity of the second line in Eq. (5)
depends on the term

∑M
m=1 |Xl

m | ∗ ul , with the computation
complexity being O(M × H × W × K × K ). Thus, the
transformation of Eq. (5) reduces the computation cost N
times for Gl

m , and M × N times for Gl .
2) Other Layers: We formulate the backprop of Normal-

ization layer, including the Batch Normalization layer and the
Local Response Normalization layer, as

gl
i = xl+1

j

x l
i

gl+1
j . (6)

Eq. (6) is also utilized for the backprop of a type of Average
Pooling layer whose input features contain negative values,
such as in the case of DenseNet. Otherwise, we directly
use the original gradient operations for the other layers in
CNNs, including ReLU, Max Pooling, Adaptive Pooling,
Skip Connection, Concat layer, and common Average Pooling
layer, etc.

As shown in Fig. 5(b), this fine-grained propagation module
can effectively deliver the TSG to the image space to generate
high-resolution saliency maps, meanwhile keeping the target
concentration. Note that the TSG can be propagated to any
layer inside the network to analyze the attributions of channels
of interest according to different demands of semantic levels
and spatial scales.

V. EXPERIMENTS

In this section, we first qualitatively validate the pro-
posed TSGB via visual comparisons. Then in quantitative
experiments, we evaluate the proposed TSGB with weakly-
supervised localization tasks on the ImageNet dataset [43] and
the Pascal VOC dataset [44]. Furthermore, we evaluate the
faithfulness of the explanations with pixel perturbation [23]
and sanity check [45]. Finally, we perform the bias diagnosis,
the medical image test and the ablation study.

We compare our method with several other competitors
including GradBP [13], GradCAM [29], DeepLIFT [36], [46],
EBP [28], FullGrad [27] and Fixation [8]. These competitors
are the state-of-the-art saliency methods in the single backward
pass type, which is consistent with the type of our method. For
our method, we set the scale coefficient to 0.5∼1.3 for the
negative enhancement in Eq. (2). More details can be found
in Section V-F. We follow the processing in [27] to obtain
final saliency maps by first multiplying the produced target-
selective gradients to feature maps, and then summing all the
elements along the channel dimension.

A. Visual Comparison

1) Comparison on Different Samples: We employ TSGB
to generate saliency maps from different targets on different
samples in comparison with the other competitors. As shown
in Fig. 8, GradBP and DeepLIFT generate noisy maps, which
highlight most foreground objects, even including some target-
irrelevant objects. FullGrad focuses on the most dominant
objects rather than the target. Fixation only generates almost
the same saliency maps w.r.t. different targets of each image.
One reasonable explanation for Fixation is that the backprop
in the FC layers neglects the negative connections, leading
to the lack of the target-selectiveness. GradCAM and EBP
can produce class-discriminative maps. However, their results
still contain irrelevant backgrounds, especially on the borders
of images, such as in the cases of “goldfish”, “cabinet”,
“cheetah” and “zebra”. It is also worth mentioning that the
generated saliency maps from FullGrad, GradCAM, and EBP
are coarse. In contrast, TSGB can produce target selective and
fine-grained maps with clear targets’ boundaries and fewer
irrelevant backgrounds. Furthermore, the explanatory results
of TSGB are more human interpretable, when compared to its
competitors.

2) Comparison on Different Models: To verify the gen-
eralization of the proposed TSGB, we further conduct the
experiments across various CNN models, along with the
competitors. From Fig. 9, we can find that over several cases
EBP can produce saliency maps with fewer background areas
than GradBP, DeepLIFT and FullGrad, while it totally fails on
DenseNet121 and MobileNetV2. The main reason is that the
features in DenseNet121 and MobileNetV2 contain negative
values, which affects the robustness of EBP. GradCAM is valid
for these tested models, while its results cannot discriminate
the borders of targets precisely. Moreover, GradCAM also
fails like EBP if the gradients are backpropagated to the
low layer [29]. Unlike these competitors, TSGB shows its
advantage of being target-selective, fine-grained, and robust
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Fig. 8. Comparison of different methods on different samples. The saliency maps are generated from different targets, annotated on the left side, in each
sample. The deep blue color represents the background, and all other colors represent varying degrees of the target evidence. The negative values are truncated
for better contrast.

for extensive models, even for the models containing negative-
value features (i.e., DenseNet121, MobileNet, etc.). In addi-
tion, we find that saliency maps generated on ResNet50 and
VGG16 are better than the other models. The target saliency
on MobileNetV2 is relatively blurry when compared to the
other networks. One possible reason is that the computation-
efficient model cannot learn good features as discriminative as
other conventional models. Since the official code of Fixation
does not support the models of ResNet50, ResNeXt, DenseNet
and MobileNet, we omit the evaluation of Fixation on these
models.

B. Weakly-Supervised Localization

1) Object Localization: A satisfactory saliency method is
expected to generate target-relevant saliency maps, where the
areas with high intensity indicate the positions of targets.
Following [28], [29], [48], we evaluate the visual saliency
methods with the weakly-supervised object localization task
on the ImageNet dataset using the VGG16 and ResNet50
models, which are pre-trained with the classification labels.

On the ImageNet 2012 validation (val) set, we first predict
categories, and then use saliency methods to generate the

TABLE I

LOCALIZATION ON THE IMAGENET VAL SET (LOWER IS BETTER). ERROR
RATES OF GRADBP, GRADCAM, AND EBP FOR VGG16 ARE TAKEN

FROM [29]. DEEPLIFT REFERS TO THE “CAPTUM” PACKAGE IN

PYTORCH1.4 [47]. FIXATION REFERS TO THE
OFFICIAL CODE IN [8]

saliency maps. The top-5 localization (LOC) error is evaluated
under the protocol of the ILSVRC challenge [43].

After achieving the saliency maps, we search the best
performing thresholds for different methods and binarize the
saliency maps with the selected thresholds to obtain the
bounding boxes. Besides the binarization, we do not append
any other post-processing techniques to our method. As shown
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Fig. 9. Comparison of different methods on different models. The models’ names are annotated on the left side. The saliency maps are generated from the
same target, i.e., “tiger cat.”

in Table I, TSGB outperforms the other methods in localization
errors both explained models. For example, the results of
TSGB are 43.46/40.49, as compared to 46.41/40.73 of the
second-best method, i.e. GradCAM, on VGG16/ResNet50.
Note that GradCAM additionally applies the post-processing
technique, i.e., searching for the largest connected component
after binarization. Compared to ResNet, the VGG model has
more FC layers, which are possible to involve the stronger
entanglement as stated in Section III. In this situation, using
TSGB to disentangle the semantics in the FC layers will boost
the performance of VGG. TSGB outperforms FullGrad by
4.36%/5.86% on VGG16/ResNet50. FullGrad aggregates all
Conv-layer saliency maps to improve the performance but it
consumes much more computation memory. We find that most
methods achieve lower error rates on ResNet50 than VGG16.
This is likely owing to the higher classification capacity of
ResNet50, leading to better localization performances.

Moreover, we test the average running speed on a GeForce
GTX 1080 Ti GPU. The proposed TSGB achieves the highest
speed at 43 frames per second (FPS), which is 6 times faster
than the DeepLIFT (7 FPS). Note that Fixation does not
support GPU computation in its backprop, resulting in the slow
running speed.

2) Point Localization: Considering that the explanatory
results intend to focus on the most discriminative regions of
targets, we use another popular evaluation metric, Pointing
Game [28], to measure the explanatory results. This metric
is defined as the ratio of hits, where a hit is counted if
the maximum point of the saliency map is inside the target
region. As shown in Table II, our method achieves the superior
performance over the other methods on the Pascal VOC2007
test set, which can be attributed to the target-selectiveness of
TSGB. GradBP and Fixation achieve much lower accuracy.
This is probably because that the point localization of GradBP
is easily interfered by the noise, and Fixation cannot focus on
the target class, which is consistent with the visual comparison
experiments (see Fig. 8).

C. Faithfulness Check

1) Pixel Perturbation: In order to evaluate the faithfulness
of explanatory results at pixel level, we use the deletion
metric [23] to test TSGB. The intuition behind this metric
is that if the saliency region is responsible for the model
prediction, the prediction probability will descend when eras-
ing the corresponding region. This protocol is to measure
the decline in prediction probability of classification when

Authorized licensed use limited to: Southeast University. Downloaded on March 18,2023 at 14:46:19 UTC from IEEE Xplore.  Restrictions apply. 



CHENG et al.: TSGB: TARGET-SELECTIVE GRADIENT BACKPROP FOR PROBING CNN VISUAL SALIENCY 2537

TABLE II

POINTING GAME ON THE VOC2007 TEST SET (HIGHER IS BETTER). THE
RESULTS OF GRADBP, GRADCAM, AND EBP ARE TAKEN FROM [28]

TABLE III

PIXEL PERTURBATION ON THE VOC2012 VAL SET (LOWER IS

BETTER). LOWER DELETION SCORE MEANS HIGHER

FAITHFULNESS OF SALIENCY METHODS

iteratively perturbing the important pixels according to the
rank of saliency values generated by a saliency method. The
steeper the decline (i.e., the lower deletion score) is, the more
reliable the saliency method is. As shown in Table III, TSGB
achieves the lowest score, which suggests TSGB is the most
faithful to the model predictions and capable of capturing the
fine-grained details corresponding to the targets.

2) Sanity Check: As suggested by [45], we conduct the
sanity check for the proposed TSGB to validate whether the
explanatory results are sensitive to the model parameters or
not. If the explanatory results are similar before and after the
model parameters are randomized, the corresponding saliency
method is more risky in trustworthiness. We evaluate the
similarity with Spearman rank correlation before and after
the randomization of model parameters for our TSGB and
the other comparative methods, including GuidedBP [26] for
reference. As illustrated in Fig. 10, TSGB and GradCAM
are sensitive to the change of the parameter values while
GuidedBP is much independent of model parameters.

D. Diagnosing Bias and Failure Cases

We adopt TSGB to diagnose the biases in the VGG16
network pre-trained on ImageNet. As shown in Fig. 11, the
man is recognized as “basketball” (top left), and the station is
recognized as “train” (bottom left), which makes it difficult
to catch the failure clues by only knowing the prediction
possibilities. Fortunately, with the help of target-selective and
fine-grained saliency maps generated by TSGB, one can easily
understand the reason why the model makes such decisions.
For example, the “basketball” class is predicted by seeing the
sports suit, and the “train” class is predicted by seeing the
rail. One reasonable explanation of model biases is that co-
occurring objects, e.g., sports suit and basketball, rail and train,
exist in the training dataset. For the right two cases in Fig. 11,
our method fails to produce the target-specific visualized maps,

Fig. 10. Sanity check with similarity metric for model randomization.
Spearman rank correlation is taken as the similarity metric. The values above
the bar are the means and standard deviations of similarities between the
original explanations and the randomized explanations on ImageNet. Lower
similarity denotes better faithfulness of explanations.

Fig. 11. Diagnosing bias and failure cases. The texts denote the predicted
targets and possibilities. TSGB can help diagnose the biases in the model and
dataset without suppressing the useful information, even in the background.

where some relevant backgrounds are not suppressed. This
is because that these backgrounds are involved in the model
predictions of the target classes. This also suggests that TSGB
is faithful to the model.

E. Explanation for Medical Images

To test the generalization of TSGB on the different types
of images, we use TSGB to explain the deep neural model
trained on the medical image dataset, i.e., the Kaggle Diabetic
Retinopathy dataset. The images in this dataset contain various
texture features and color features, which are non-object-like
features. Thus there is a big domain gap between the Kaggle
Diabetic Retinopathy dataset and the ImageNet dataset. The
explained model is ResNet152 trained on the Kaggle Diabetic
Retinopathy dataset with image-level labels. It took around
more than 100 epochs to train this model to achieve 97%
accuracy for classification. As shown in Fig. 12, TSGB obtains
more reliable explanatory results than the other competing
methods. Benefiting from the target-selectiveness, TSGB can
focus on the disease-relevant regions. More importantly, with
the property of fine-grainedness, TSGB can effectively high-
light the detailed patterns in the medical images.

F. Ablation Study

1) Target Selection Module vs. Fine-Grained Propagation
Module: We compare the proposed target selection module
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Fig. 12. Explanation for several medical images. We compare the proposed TSGB with GradBP [13], GradCAM [29], EBP [28], and FullGrad [27]. The
red ovals denote the lesions of retinas.

TABLE IV

ABLATION STUDY FOR TSGB (LOWER IS BETTER). “GRAD” DENOTES

THE VANILLA GRADIENT BACKPROP. “TSGB-FC” DENOTES THE
TARGET SELECTION MODULE.“TSGB-CONV” DENOTES

THE FINE-GRAINED PROPAGATION MODULE

with the proposed fine-grained propagation module via abla-
tion study on the ImageNet localization task. We choose
the vanilla gradient backprop as our baseline. As shown in
Table IV, when replacing the vanilla gradient backprop in the
FC layers with the target selection module, the LOC error
achieved by TSGB-FC+Grad becomes 4.39% lower. When
replacing the vanilla gradient backprop in the Conv. layers with
the fine-grained propagation module, the LOC error achieved
by Grad+TSGB-Conv becomes 1.29% lower. Although the
fine-grained propagation module seems less useful, when we
further append the fine-grained propagation module to the
target selection module, the LOC error continues to decrease,
i.e., 5.14% lower than that obtained by TSGB-FC+Grad. This
shows that both of the proposed modules are necessary to
TSGB and provide complementary benefits to TSGB. Those
two modules are tied tightly in one framework, achieving
better performance than only using a single module.

2) Fine-Grained Propagation Module vs. Edge Detector:
Benefiting from the fine-grained propagation module, the
saliency maps can highlight clear details relevant to the targets,
such as the examples in Fig. 8. When we propagate the
saliency maps to the pixel level, the visualizations appear more
edges-like patterns, since the low layers in CNN are inclined
to extract edge features and other low-level features from the

Fig. 13. Influence of the fine-grained propagation module and the edge
detector. (a) Input images. (b) Saliency maps generated by TSGB. (c) Saliency
maps generated by replacing of the fine-grained propagation module in TSGB
with the edge detector.

images. Nevertheless, the fine-grained propagation module is
not equivalent to an edge detector. We replace the fine-grained
propagation module with the edge detector and evaluate the
new setting with the pixel perturbation experiment, which turns
out 11.06% worse. Compared with the edge detector, the fine-
grained propagation module can also highlight the texture and
color patterns, besides the edge patterns, such as the “orange”
and the “dark glasses” in Fig. 13. Moreover, the fine-grained
propagation module can refine the details in coarse saliency
maps in a top-down manner, such that it further suppresses the
irrelevant object parts, such as the hair tail in the “dark glasses”
and the bar in the “soccer ball” in Fig. 13. In addition, the
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Fig. 14. Influence of different values of the scale coefficient α on the
performance of TSGB.

fine-grained propagation module can propagate the saliency
maps to different semantic levels at different spatial scales,
and it can analyze the attributions of different features
channels.

3) Influence of Scale Coefficient: To analyze the influence
of choosing different values of the scale coefficient α in
Eq. (2), we test the proposed TSGB with Pointing Game,
as mentioned in “Point localization” in Section V-B. We record
the experimental results corresponding to varied α ∈ [0.5 :
0.1 : 1.3] both on the VGG16 and ResNet50 models. As shown
in Fig. 14, we can find that each model has one peak mean
accuracy as α varies from 0.5 to 1.3, where VGG16 obtains the
best result at α = 0.8 and ResNet50 obtains the best result at
α = 0.9. Furthermore, the results on VGG16 are less sensitive
to the scale coefficient α than those on ResNet50. Specially,
the accuracy on the VGG16 model fluctuates within a very
small extent, i.e., 0.35, in the whole range of α. On both
models, there is less fluctuation in the mean accuracy for
α ∈ [0.6, 1.2].

VI. CONCLUSION AND DISCUSSION

To probe the CNN visual saliency, we propose a novel
saliency backprop method, i.e., target-selective gradient back-
prop (TSGB), which consists of a target selection module and a
fine-grained propagation module. The target selection module
adaptively enhances the negative connections to disentangle
the target class from the irrelevant classes and background. The
fine-grained propagation module leverages the information of
feature maps to propagate the visual saliency and produces
high-resolution saliency maps. Qualitative experiments show
that TSGB can more discriminately explain different targets
and generate clearer saliency maps than the competitive
methods. Moreover, TSGB can be used for most of the CNN
models. Quantitative experiments reveal that TSGB achieves
superior localization performance, and stronger reliability over
the competitive methods. Furthermore, we also validate that
TSGB is faithful to the explained models.

Note that this explanatory work is mainly based on the
visual aspect, as it is difficult to establish a set of rigorous
mathematical explanations. We leave the theoretical study for
the future research.
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