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a b s t r a c t 

This paper studies a new yet practical setting of semi-supervised semantic segmentation, i.e., hybrid- 

supervised semantic segmentation, where a small number of pixel-level (strong) annotations and a large 

number of image-level (weak) annotations are provided. It is a common practice to utilize pseudo la- 

bels to mitigate the issue of lacking strong annotations. However, most of the existing works focus on 

improving the model representation with unlabeled data, while ignoring the quality of pseudo labels, 

leading to poor segmentation performance. It is difficult to directly learn a model with limited images to 

produce high-quality pseudo labels. To address this problem, we propose a novel learning method, i.e., 

Transformer based Refinement Learning (TRL), which explores a learning process under the assistance of 

weak annotations and the supervision of strong annotations. TRL progressively refines heat maps from 

the poor qualities to the better ones to obtain satisfactory pseudo labels. Specifically, we propose a Dual- 

Cross Transformer Network (DCTN) to perform the refinement learning. DCTN extracts the features from 

both images and heat maps by a dual-stream network. The cross attentions inside DCTN hierarchically 

fuse the dual-stream features. 

The experiments on the PASCAL VOC and COCO datasets show that TRL outperforms the state-of-the-art 

methods for hybrid-supervised semantic segmentation. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Semantic segmentation [1–4] is a fundamental task in computer 

ision and it plays an important role in real-world applications, 

uch as autonomous driving [5] , medical diagnosis [6] , and digital 

akeup [7] . Training a segmentation network usually requires a 

arge number of densely annotated images, which are very expen- 

ive to collect. For example, annotating an image with 2048 × 1024 

ixel labels usually costs more than 1.5 h [8] , which is around 270

imes slower than annotating an image with class labels [9] . 

To alleviate the problem of expensive annotations, some 

eakly-supervised methods [10–12] exploit much cheaper annota- 

ions (e.g., class labels) to extract heat maps (e.g., the 2nd column 

n Fig. 1 ) to generate pseudo labels for the segmentation training. 

owever, the class labels only provide the limited supervisory 

nformation, which restricts the quality of the generated pseudo 
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abels, leading to unsatisfactory segmentation. On the other hand, 

 set of semi-supervised methods [13–15] explore using a small 

umber of images with pixel-level labels and a large number 

f unlabeled images to train segmentation models. Nevertheless, 

nsufficient quantity of labeled data also hinder the performance 

mprovement. Therefore, we study a more effective and effi- 

ient learning paradigm, i.e., a special semi-supervised semantic 

egmentation, where a small number of pixel-level annotations 

nd a large number of image-level annotations are provided. We 

ormally define it as hybrid-supervised semantic segmentation. 

his paradigm allows the model to obtain a higher performance 

hile keeping low annotation costs, and thus it is more practical 

nd feasible in real-world applications [16] . 

Few methods have been proposed specially for the task 

f hybrid-supervised semantic segmentation. Recently, Luo and 

ang [16] propose a strong-weak dual-branch network (SWDN) to 

ackle the problem of hybrid supervisions, where they adopt the 

eakly-supervised method DSRG [17] to produce pseudo labels. 

owever, weakly-supervised methods often rely on some heuristic 

riors and manually fine-tuned thresholds, to improve the qual- 

ty of pseudo labels, while the learned pseudo labels are still un- 

atisfactory compared to human-annotated labels. In the paradigm 
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Fig. 1. Examples of the refinement learning of the heat maps. The original heat 

maps of input are of low quality. The heat maps are gradually improved during the 

refining process. 
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f hybrid-supervised learning, most existing methods neglect us- 

ng strong annotations to learn high-quality pseudo labels to im- 

rove the segmentation performance. Intuitively, the higher quality 

f pseudo labels will result in better segmentation performance. 

owever, it is difficult to directly learn a model from limited im- 

ges to produce desirable pseudo labels, which is considered a 

hallenge. 

To address this problem, we propose a learning method, i.e., 

ransformer based Refinement Learning (TRL), to progressively 

efine the heat maps (e.g., Fig. 1 ) generated from weak anno- 

ations to produce desirable pseudo labels, supervised by the 

trong annotations. TRL takes heat maps and natural images as 

wo-stream inputs and it outputs prediction maps, which can be 

nderstood as refined heat maps. Then, the refined heat maps 

nd images are fed into the next round of refinement learning. 

pecifically, a Dual-Cross Transformer Network (DCTN) is de- 

ised to perform the refinement learning. DCTN deeply extracts 

he features from the two-stream inputs. The designed cross 

ttention layers inside DCTN hierarchically fuse the two-stream 

eatures. Ultimately, high-quality pseudo labels are generated from 

CTN and they are adopted to train the segmentation model. 

ur method does not require manual thresholds or CRF [18] as 

he post-processing step. Extensive experiments on the PAS- 

AL VOC [19] and COCO [20] datasets show the superiority of 

ur method against several state-of-the-art methods for hybrid- 

upervised semantic segmentation. 

The main contributions of this paper are three-fold: (1) We 

ropose a novel learning method, i.e., Transformer based Refine- 

ent Learning (TRL), which learns a refining process of heat maps 

o generate high-quality pseudo labels, to address the hybrid- 

upervised semantic segmentation. (2) We design a Dual-Cross 

ransformer Network (DCTN) to implement the refinement learn- 

ng, where the hierarchical cross attentions inside DCTN benefit the 

nteraction of two-stream features. (3) We evaluate the proposed 

RL by extensive experiments, which show that TRL achieves the 

tate-of-the-art performance, even surpassing the fully-supervised 

earning method. 

. Related work 

Semi-supervised semantic segmentation. There are two main 

roups of methods to deal with the semi-supervised semantic seg- 

entation task: consistency learning and self-training. 

Consistency learning aims to make use of unlabeled data to 

elp the training model learn better representations. Consistency 

earning based methods [13,15,21–23] enforce the features or pre- 

ictions to keep consistency when the input images or interme- 
240
iate features are perturbed. For example, CCT [21] uses differ- 

nt types of perturbations to adjust the features from the en- 

oders and uses a consistency loss to constrain the outputs of a 

ain decoder and auxiliary decoders, aiming to boost the repre- 

entation ability of the main decoder. DCC [23] randomly crops 

wo patches with overlapping regions from the original image to 

rain the segmentation model, which makes the learned represen- 

ations robust to different contexts. However, these methods do 

ot improve the quality of pseudo labels, limiting the segmentation 

erformance. 

Several self-training based methods [24–26] are developed to 

ackle semi-supervised semantic segmentation. Those methods 

rst use the labeled data to train a segmentation model, and then 

se the trained model to generate pseudo labels on the unlabeled 

ata. Finally, these generated labels are used to retrain the model. 

he whole progress can be iteratively performed several times. Dif- 

erent from self-training, TRL does not directly use original images 

o train the model, by which it is very hard to produce high-quality 

abels. Instead, we propose an effective two-stage refinement strat- 

gy to generate high-quality heat maps. 

Weakly-supervised semantic segmentation. Weakly- 

upervised semantic segmentation takes cheaper annotations 

s supervisions, including image classes, points, scribbles, and 

ounding boxes. Image class labels, as the most frequently used 

eak annotations, can be utilized to train a classification model, 

hich is then visualized by CAM [10] to output heat maps. Fur- 

hermore, some post-processing techniques [12,18] are appended 

n heat maps to produce pseudo labels. Due to the low quality of 

hese pseudo labels, several weakly-supervised learning methods, 

uch as DSRG [17] , FickleNet [27] , IRNet [28] and AdvCAM [29] ,

re developed to improve the quality of the generated pseudo 

abels. However, these improved labels are not sufficient to train a 

atisfactory segmentation model. 

Hybrid-supervised semantic segmentation. This task adopts 

ixel-level annotations and other weaker annotations, e.g., im- 

ge class labels, as supervisions. This paradigm can reach a 

etter balance between the annotation costs and learning perfor- 

ance. Although several semi-supervised learning methods, e.g., 

CT [21] and DCC [23] , can also deal with the hybrid-supervised 

emantic segmentation task, they only append an extra loss with 

seudo labels to other losses and neglect the relation between 

eak annotations and strong annotations. SWDN [16] deals with 

he issue of hybrid supervision with different qualities and uses 

he dual-branch supervisions to handle the hybrid-supervised task. 

Unlike these methods, we develop a Transformer based Refine- 

ent Learning (TRL) framework to address the hybrid-supervised 

emantic segmentation. TRL progressively refines heat maps to 

enerate high-quality pseudo labels for training a segmentation 

odel. 

. Method 

.1. Problem definition 

Hybrid-supervised semantic segmentation aims to learn a seg- 

entation model under different kinds of supervisions. Strong 

upervisions use pixel-level annotated data, denoted as X 

s = 

(x s 
i 
, y s 

i 
) 
}N s 

i =1 
, where x s 

i 
and y s 

i 
are the i th strongly annotated image 

nd label. Weak supervisions use weakly annotated data, denoted 

s X 

w = 

{
(x w 

i 
, y w 

i 
) 
}N w 

i =1 
, where x w 

i 
and y w 

i 
are the i th weakly anno-

ated image and label. The subscripts in the following are omit- 

ed for simplicity. The number of strong annotations N s is usually 

uch less than that of weak annotations N w 

. This paper adopts the 

idely-used image classes (i.e., image-level labels) as weak anno- 

ations. 
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Fig. 2. Overview of our learning framework. CAM denotes class activation map [10] . 

DCTN 1 and DCTN 2 denote the first and the second dual-cross Transformer networks. 

CLF denotes the class label filtering module. We take the VOC dataset as an exam- 

ple. 
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.2. Refinement learning process 

With a large amount of image-level labeled data X 

w , we can 

rain a multi-label classification model. Then, given an image x w 

nd its class label y w , an initial heat map h 0 ∈ R 

C×H×W can be

enerated from the trained classification model by the CNN visu- 

lization techniques [10,30,31] , such as CAM [10] , where H, W , C

re the height, width and number of classes. However, these heat 

aps cannot be directly adopted to produce high-quality pseudo 

abels ˜ y ∈ R 

H×W for the segmentation training. Therefore, we pro- 

ose a refinement learning method (i.e., TRL), which progressively 

efines the heat maps under the supervision of the small amount 

f pixel-level labeled data X 

s to generate high-quality pseudo la- 

els ( Fig. 2 ). 

The initial heat map h 0 and the strongly annotated image x s are 

ed into the first dual-cross Transformer network, i.e., DCTN 1 (de- 

ailed latter) and are trained with the label y s . We use the standard

ross-entropy loss l ce as the training loss L : 

 = l ce ( DCTN 1 (x 

s , h 0 ; θ1 ) , y 
s ) , (x 

s , y s ) ∈ X 

s , (1) 

here θ1 denotes the network parameters. In the inference phase, 

iven the weakly annotated image x w , DCTN 1 outputs a prediction 

ap h 1 , i.e., the higher-quality heat map. 

Following DCTN 1 , a class label filtering module (i.e., CLF) is 

dded to boost the quality of the heat map, by setting the channels 

f non-existent classes in the prediction map to zero according to 

he provided class labels y w . Thus, a filtered prediction map h 

′ 
1 is 

btained as h 

′ 
1 

= CLF (h 1 , y 
w ) . 

Then, h 

′ 
1 

is treated as a new input heat map and it is fed with

he image into the dual-cross Transformer network to train a sec- 

nd network with the same loss in Eq. (1) . At the second round,

e add FPN [32,33] to the second dual-cross Transformer network 
a

241 
DCTN 2 ) to further improve the capacity of refinement. In the in- 

erence phase, an output heat map h 

′ 
2 is obtained by DCTN 2 and 

nother CLF, as 

 

′ 
2 = CLF (h 2 , y 

w ) = CLF ( DCTN 2 (x 

w , h 

′ 
1 ; θ2 ) , y 

w ) , (2)

here θ2 denotes the parameters of DCTN 2 . 

Finally, a large amount of image-level labeled data X 

w are fed 

nto the refining process to produce high-quality pseudo labels 

˜  (where ˜ y = argmax (h 

′ 
2 
) ), without using any manually selected 

hreshold or post-processing technique (e.g., CRF [18] ). Afterwards, 

he generated pseudo (weak) labels and the small number of orig- 

nal (strong) labels are fed into a segmentation model to train the 

nal semantic segmentation. 

How can refinement learning outperform the direct learn- 

ng for generating pseudo labels? Instead of directly learning a 

odel from the original images, the proposed refinement learning 

ecomposes the whole procedure into the progressive processes. 

oreover, with the assistance of heat maps as a part of the in- 

uts, the learning process will be much easier, as heat maps can 

e deemed as high-level features. 

.3. Dual-Cross Transformer network 

In our learning framework, the input source contains two 

ifferent types of data, i.e., natural images and heat maps. Be- 

ween these two data, there exists a large distribution gap, which 

ncreases the learning difficulty. To address this problem, we 

ropose a dual-stream Transformer with cross attentions, namely 

ual-cross Transformer network (DCTN), to perform the heat map 

efinement. 

As shown in Fig. 3 , the proposed model contains a warm- 

p module, low-level feature extractors, four-stage Transformer 

locks, and prediction heads. The warm-up module consists of two 

atch normalizations with a point-wise convolution in between. 

his module is used to normalize the distribution of heat maps. 

ach of the low-level feature extractors is composed of two layers 

f convolutional blocks, which are used to encode and preserve 

he low-level features. The Transformer blocks contain two par- 

llel branches, each of which handles one source stream. The 

arallel architecture allows the model to learn different features 

ndividually. Nevertheless, these two-stream Transformers are not 

ntirely independent. We devise a cross Transformer block for the 

ast module at each stage, which allows the information from the 

wo-stream branches to be fused and compensated for each other. 

Cross Transformer block. As illustrated in the right part of 

ig. 3 , we propose to construct a cross Transformer block, which 

ontains dual inputs and dual outputs corresponding to the image 

tream and the heat map stream. The queries q 1 and keys k 1 for 

he image stream are computed from the image stream input x in . 

he queries q 2 and keys k 2 for the heat map stream are computed 

rom the heat map stream input h in . The formulations are written 

s 

 1 = Conv q1 ( LN (x in )) , k 1 = Conv k1 ( LN (x in )) , 

 2 = Conv q2 ( LN (h in )) , k 2 = Conv k2 ( LN (h in )) , 
(3) 

here Conv ρ denotes the 1 × 1 convolution for the corresponding 

utputs ρ . LN denotes Layer Normalization [34] . Specially, the val- 

es v 1 for the image stream and the values v 2 for the heat map

re derived from the cross stream inputs (i.e., h in and x in ) as cross

onnections: 

 1 = Conv v1 ( LN (h in )) , v 2 = Conv v2 ( LN (x in )) . (4) 

hen, cross attentions a 1 and a 2 are obtained by the scaled dot 

roduct [35] : 

 1 = Conv a1 ( softmax (s q 1 k 

T 
1 ) v 1 ) , 

 2 = Conv a2 ( softmax (s q 2 k 

T ) v 2 ) , 
(5) 
2 
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Fig. 3. The pipeline of the proposed dual-cross Transformer network (DCTN). The left part is the proposed network. The right part is the cross Transformer block as the last 

module at each stage. The patch embedding, the position encoding generator and the layer normalization are omitted for convenience. 
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Fig. 4. Comparison of attention maps in dual-cross Transformer network (DCTN) 

and dual Transformer network (DTN). DCTN can probe the spatial similarity (of tv, 

keyboard, and background) by qk T , and attend to the target (of tv) by a . However, 

DTN without cross attention fails. 

Table 1 

Hyper-parameters of the proposed DCTN. 

Layer Patch Channel Sub-window Output 

size number size size 

Warm up Conv0 - 64 - H × W 

Feature 

extractor 

Conv1 - 64 - H × W 

Conv2 - 64 - H × W 

Stage 1 4 64 5 H/ 4 × W/ 4 

Transformer Stage 2 2 128 5 H/ 8 × W/ 8 

Stage 3 2 256 5 H/ 16 × W/ 16 

Stage 4 1 512 5 H/ 16 × W/ 16 

l

d

t

D

w

O

2

1

i

a

p

r

3

W

1

m

here s denotes the scaling factor. Note that the cross attentions 

an be combined with a multi-head mechanism, which is omit- 

ed here for simplicity. Next, we obtain the residual cross atten- 

ions (r 1 = x in + a 1 , r 2 = h in + a 2 ) . Further, the outputs of the cross

ransformer block x out and h out are achieved by passing r 1 and 

 2 through the MLP module, which can be formulated as x out = 

 1 + MLP ( LN (r 1 )) , h out = r 2 + MLP ( LN (r 2 )) . Cross connections for

he values v 1 and v 2 lead to better feature fusion and information 

nteraction. 

Prediction head. In DCTN 1 , we sum the two-stream outputs 

 out(4) and x out(4) of the fourth-stage block and then feed the sum- 

ation into a prediction head. The head for DCTN 1 consists of a 

ayer normalization LN and a 1 × 1 convolution Conv s1 . Formally, 

he first prediction head is formulated as 

ead 1 = Conv s1 ( LN (h out(4) + x out(4) )) . (6) 

In DCTN 2 , the two-stream outputs of the four-stage blocks are 

ollected and fed into FPN [32,33] . Then, they are fused with the 

ow-level feature maps of the heat map stream h low 

. Thus, the sec- 

nd prediction head is formulated as 

ead 2 = FPN 

(
LN (h out(1) + x out(1) ) , 

LN (h out(2) + x out(2) ) , LN (h out(3) + x out(3) ) , 

LN (h out(4) + x out(4) ) 
)

+ GN ( Conv s2 (h low 

)) , 

(7) 

here GN is Group Normalization [36] . 

Differences between DCTN and segmentation Transformers. 

1) Function: Segmentation Transformers process natural images, 

nd output the class mask. DCTN performs the heat map refine- 

ent, where it processes both heat maps and images, and outputs 

efined heat maps. (2) Framework: The segmentation Transform- 

rs, e.g., Twins [37] and Swin [38] , usually contain single-stream 

ransformer blocks. DCTN comprises two parallel Transformers 

ith the cross Transformer blocks at the end of each stage, which 

an hierarchically fuse the two modal features. (3) Attention: 

ompared with the common self-attention, the proposed cross 

ttention ( Eq. (5) ) computes the correlation within one stream 

e.g., both q 1 and k 1 from image features) to recompose the other 

tream (e.g., v 1 from heat map features). As shown in Fig. 4 , DCTN

an successfully attend to the target, while the dual Transformer 

etwork without cross attention fails. 

. Experiments 

.1. Implementation details 

Network architecture. During the refinement learning, we use 

CTN based on the backbone of Twins-SVT [37] to generate pseudo 
242 
abels. The hyper-parameters of DCTN are listed in Table 1 . More 

etails of Transformer can be found in [37] . During the segmen- 

ation learning, following the baseline SWDN [16] , we use the 

eepLabV1 model [39] with ResNet101 as the backbone model, 

hich is trained under the strong-weak dual-branch supervisions. 

therwise, we will state specific backbones. 

Datasets. The experiments are conducted on the PASCAL VOC 

012 [19] and COCO 2017 [20] datasets. Following [16] , for VOC, 

.5k pixel-level labels are used as the strong annotations. 9k 

mage-level labels are used as the weak annotations, which are 

dopted to generate pseudo labels. Similarly, for COCO, the pro- 

ortion of strong/weak annotations is 20k/98k. 

Experimental settings. We apply horizontal flip, random 

escaling, and cropping (320 × 320 for the refinement learning and 

28 × 328 for the segmentation learning) for data augmentations. 

e adopt the Adam algorithm [40] with an initial learning rate of 

e-4 and a decay rate of 0.1 for optimization. During the refine- 

ent learning, the models are trained with the batch size of 8 for 
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Table 2 

Ablation study for TRL framework. mIoU is reported on the VOC train- 

aug set [41] . “STN” denotes the original single-stream Transformer net- 

work [37] . “CLF 1 ” and “CLF 2 ” denote the first and second CLF modules. 

Image CAM STN DCTN 1 CLF 1 DCTN 2 CLF 2 mIoU 

� 47.3 

� � 53.8 

� � 57.5 

� � � 69.4 

� � � 72.7 

� � � � 74.4 

� � � � � 75.6 

� � � � � � 75.7 

Table 3 

Ablation study for DCTN model, focusing on the first procedure. DTN 

means the dual Transformer network without cross attention. 

Method Cross attention Warm up FPN mIoU 

DTN � 62.2 

DCTN 1 w/o warm up � 68.5 

DCTN 1 w/ FPN � � � 68.3 

DCTN 1 � � 72.7 
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Table 4 

Segmentation results on the VOC val and test sets. FullSup is trained 

with full 10.5k pixel-level labels, where its result is produced with the 

code from Luo and Yang [16] . Other results are copied from the original 

papers. † denotes our baseline. 

Method Model Backbone Val- Test 

FullSup [39] DeepLabV1 ResNet101 77.7 - 

WSSL [42] DeepLabV1-CRF VGG16 64.6 66.2 

DSRG [17] DeepLabV2 VGG16 64.3 - 

MDC [43] DeepLabV1-CRF VGG16 65.7 67.6 

FickleNet [27] DeepLabV2 ResNet101 65.8 - 

CCT [21] PSP-Net ResNet50 73.2 - 

PseudoSeg [22] DeepLabV3 + ResNet50 73.8 - 

DCC [23] DeepLabV3 + ResNet50 76.1 - 

AdvCAM [29] DeepLabV2 ResNet101 77.8 76.0 

SWDN 

† [16] DeepLabV1 ResNet101 76.6 77.1 

TRL (Ours) DeepLabV1 ResNet101 78.5 78.6 
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50 epochs on VOC and 30 epochs on COCO. During the segmen- 

ation learning, the models are trained with the batch size of 4 for 

2 epochs on VOC and 10 epochs on COCO. We adopt mIoU as the 

valuation metric for all experiments. 

Computational complexity. In the testing phase of segmenta- 

ion, we only perform segmentation by using the DeepLab model 

ithout running DCTN, which consumes the same FLOPs (on 

28 × 328 image) as our baseline SWDN [16] (i.e. 83 G). 

.2. Ablation studies 

The ablation studies are conducted on the VOC dataset by eval- 

ating the quality of generated pseudo labels. 

Analysis of the TRL framework. As shown in Table 2 , the ini- 

ial quality of CAM (47.3% mIoU) is reported as reference. When 

nly using original 1.5k images to train a single-stream Trans- 

ormer network, the mIoU of the generated pseudo labels is 53.8%. 

n the other hand, when only using the original 1.5k heat maps 

rom CAM to train a single-stream network, the mIoU of gener- 

ted pseudo labels is 57.5%. We also test a single Transformer with 

mages and heat maps concatenated together as input, resulting 

n 69.4% mIoU. All of these three results are not satisfactory. In 

ontrast, we adopt images and heat maps as two-stream inputs to 

rain the proposed DCTN 1 , achieving 72.7% mIoU, which is 18.9%, 

5.2% and 3.3% higher than those under the single-stream settings 

espectively. 

When gradually appending CLF 1 , DCTN 2 and CLF 2 , the quality 

f generated pseudo labels is improved correspondingly. At last, 

ur method reaches 75.7% mIoU, which outperforms CAM by a 

arge margin (28.4%). Notice that the pseudo labels in our base- 

ine method [16] is produced by DSRG [17] . DSRG obtains an mIoU 

f 60.1%, which is also far behind our method. This experiment 

emonstrates the effectiveness of each proposed learning stage. 

ome visual examples can be found in Fig. 1 . 

Analysis of the DCTN model. Since the difference between the 

CTN 1 and DCTN 2 is only the prediction head, we will empha- 

ize the analysis on DCTN 1 and the prediction head. Table 3 shows 

hat employing a dual Transformer network without cross atten- 

ion worsens the mIoU of the pseudo labels at the first stage from 

2.7% to 62.2%. This validates the importance of cross attention in- 

ide the proposed DCTN, since the information interaction between 

he two streams is essential for feature fusion and complemen- 
243 
ation. When we discard the warm-up module, the performance 

ecreases by 4.2%. When adding FPN in the prediction head in 

CTN 1 , the performance drops by 4.4%. This indicates that proper 

rediction heads suit the different learning stages. 

.3. Comparison with state-of-the-art methods 

Results on VOC. As shown in Table 4 , we compare the proposed 

RL with the state-of-the-art methods. For a fair comparison, the 

mployed models and backbones of all methods are listed in the 

able. 

Our TRL achieves 78.5% and 78.6% mIoU on the VOC val set 

nd test set respectively, which are 1.9% and 1.5% higher than the 

aseline SWDN. The improvement of our method over the baseline 

s mainly attributed to the high quality of the pseudo labels gen- 

rated by our method. Surprisingly, we observe that our method 

ven surpasses the fully-supervised method (i.e., FullSup [39] ). This 

s because under the dual-branch supervisions [16] , our method is 

ossible to surpass FullSup when the quality of the pseudo labels 

enerated by our method is good enough. 

Moreover, our TRL outperforms several consistency learning 

ased methods, e.g., CCT [21] and DCC [23] , as they do not con- 

ider promoting the quality of pseudo labels. TRL also surpasses 

he weakly-supervised learning based methods (i.e., DSRG [17] and 

ickleNet [27] ) by a large margin (i.e., 14.2% and 12.7% gains) on 

he val set, because their pseudo labels are unsatisfactory. Ad- 

CAM [29] produces relatively high-quality pseudo labels, which 

re still inferior to ours, and it obtains the best result among the 

ther competitors. Unlike AdvCAM applying consistency training, 

ur method does not use the consistency training, but it outper- 

orms AdvCAM by 2.6% gains on the test set. 

The superior performance of our TRL method can be attributed 

o the fact that it explores the heat map refinement learning to 

mprove the quality of pseudo labels, which is neglected by most 

f the state-of-the-art methods. 

Results on COCO. We further validate the proposed TRL on the 

OCO dataset. COCO includes a large amount of data and it is much 

ore challenging than VOC. We apply TRL to refine the heat maps 

ielded by CAM and generate the pseudo labels, which are used 

o train the segmentation model. Table 5 shows that our method 

utperforms the baseline by 2.1% when using VGG16 as backbone, 

nd 5.5% when using ResNet101 as backbone. Our method also out- 

erforms LPLN [44] by a large margin (i.e., 18.1%). Notice that our 

ethod again surpasses the fully-supervised learning method, i.e., 

ullSup [39] , which is with the same backbone as ours. These re- 

ults on COCO further verify the generalization of TRL. 

Different data proportions. To validate the robustness of the 

roposed method, we evaluate our method on different propor- 
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Fig. 5. Visual examples of segmentation results obtained by the competing methods. The baseline supervised only by 1.5k strong annotations (i.e., SupOnly) and the baseline 

SWDN are compared with our TRL. 

Table 5 

Segmentation results on the COCO val set. † denotes our baseline. Full- 

Sup means the fully-supervised method for the DeepLab model. 

Method Backbone Data mIoU 

FullSup [39] VGG16 s20k 46.1 

FullSup [39] VGG16 s118k 48.9 

LPLN [44] VGG16 s20k + w60k 31.6 

SWDN 

† [16] VGG16 s20k + w98k 47.6 

TRL (Ours) VGG16 s20k + w98k 49.7 

TRL (Ours) ResNet101 s20k + w98k 53.1 

Fig. 6. Segmentation results on the VOC val set by different methods trained on 

different splits. The values of each point for CCT and PseudoSeg are taken from Zou 

et al. [22] . 
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ions of strong annotations. Following the practice in [22] , we 

andomly subsample 1/2, 1/4, 1/8, and 1/16 of images from the 

tandard VOC training set as the strong annotations. As shown 

n Fig. 6 , our method consistently outperforms the competitors 

n all data splits, especially when the scale of strong annotations 

ecomes larger. When the backbone ResNet50 is replaced with 

esNet101, our method obtains further performance improvement. 

.4. Visual results 

Fig. 5 presents some visual examples of the segmentation 

esults on VOC 2012. From the first row of Fig. 5 , we can observe

hat the baseline supervised only by 1.5k strong annotations (i.e., 

upOnly) and the baseline SWDN predict some false regions inside 
244 
he object “cow”, while the segmentation map obtained by our TRL 

ontains less regions of the wrong category. Similarly, in the third 

ow, SupOnly outputs several false points in the object “bus”, while 

he output of our TRL is correct for the object “bus”. Combining 

he observations in the first and third rows, our TRL can predict 

ewer wrong foreground classes compared with SupOnly and 

WDN. Moreover, from the second row, we can see that SupOnly 

nd SWDN mistakenly recognize some regions in the object “sofa”

s background, while our TRL can segment the “sofa” regions more 

ompletely. Similarly in the fourth row, TRL outputs larger true 

egions of “car” and “bicycle” compared with SupOnly and SWDN. 

ccording to the second and fourth rows, our TRL can predict more 

rue foreground regions, even under a very challenging circum- 

tance with occlusions (e.g., “car” and“bicycle” in the fourth row). 

. Conclusion 

This paper formally defines the learning paradigm of hybrid- 

upervised semantic segmentation. We introduce a novel and 

imple method, i.e., Transformer based refinement learning (TRL), 

o advance the quality of pseudo labels for hybrid-supervised 

emantic segmentation. We design a dual-cross Transformer 

etwork (DCTN) to perform the heat map refinement learning. 

y using TRL, we obtain high-quality pseudo labels, which are 

sed to more effectively train the segmentation model. Extensive 

xperiments on the PASCAL VOC and COCO datasets demonstrate 

hat our method is superior to several state-of-the-art competitors 

or hybrid-supervised semantic segmentation. 
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