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1 Introduction

In recent years, research on the multi-agent consensus problems [1] under practical con-

straints is gaining much attention due to its closed connection to industrial applica-

tions. By practical constraints, mainly three types are considered, namely agent dynam-

ics constraints, actuator constraints and communication/sensing constraints [2]. Among

them, actuator constraints and communication/sensing constraints arise from the scenar-

ios where agents are equipped with digital devices (processors, actuators, sensors and

wireless transmitters/receivers) with limited performance. To deal with these practi-

cal constraints, time-scheduled [3, 4] and event-scheduled [5, 6, 7] control schemes have

been introduced. Compared to time-scheduled control, event-scheduled control is more

favourable in multi-agent systems since it provides aperiodic event triggers for informa-

tion broadcasting and controller updates, which can reduce the requirement of on-board

resources significantly.

From the viewpoint of the controller update, there are three main event-triggered

schemes, which are widely adopted among vast numbers of papers regarding event-triggered

multi-agent consensus problem [5, 6, 8, 9, 7, 10]. The first scheme is proposed in [5] where

each agent triggers events and broadcasts its event times to its neighbours; the controller

for each agent is updated both at its own event times as well as the event times of its

neighbours. We refer interested readers to the follow-up work [8, 9], where time-dependent

trigger conditions and a time regulation idea are respectively introduced to obtain Zeno-

free triggers (Zeno behaviour is excluded for each agent). The second scheme proposed

in [6] and developed in [11, 12] requires each agent to continuously measure the relative

information over its edge links; by using combined relative measurements to design trigger

condition, each agent only needs to update its control input at its own event times. The

third scheme proposed in [7, 10] is also termed the edge-event-based triggering scheme.

Trigger events are defined over each edge link and activate the controller updates for two

linked agents simultaneously. Zeno-free triggers are achieved by using a switching edge

weight approach. The work of [13] extends the results in [7, 10] by considering directed

graph and double integrator agent dynamics. Time-dependent trigger condition is used

to eliminate Zeno behaviour rather than the instead of weight approach.

Note that two issues are not well addressed in all of the above mentioned work: 1)

the discussion of global or local coordinate frames for information sensing, and 2) the

assumption that all agents use synchronized clocks. In [14], the authors provide explana-
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tions about the coordinate frame requirements for [5, 8, 9, 6, 11]. However, this issue is

not addressed in papers [7, 10] using edge-event-based schemes. On the other hand, the

assumption of synchronized clocks is actually not reflective of many practical applications

(e.g. robots are not likely be activated simultaneously). Achieving clock synchronization

is a challenging task [15, 16]. We emphasize that the assumption of synchronized clocks

plays a very important role in edge-event-based trigger scheme [7, 10, 13]. This is be-

cause two agents linked by one edge cannot trigger events simultaneously if they do not

work under synchronized clocks i.e. synchronous controller updates for two linked agents

cannot be guaranteed.

In this report, we present novel edge-event-based algorithms to achieve multi-agent

consensus with Zeno-free triggers under both synchronized and unsynchronized clocks.

The agent’s dynamics are modelled by single integrators and the graph topology is as-

sumed to be fixed, undirected and connected. The contributions of this report is two-fold.

Firstly, as compared to [7, 10], the synchronized clock case studied in section 3 and section

4 provides another point of view with much simpler trigger conditions both for undirected

and directed sensing topologies. In our framework, agents only use relative information

measured in its own local coordinate frame to achieve average consensus in undirected

sensing topologies and consensus in directed sensing topologies. This is in contrast to

prior work [17, 9] (a global coordinate frame is required for all agents) and [6, 11] (aver-

age consensus cannot be achieved). We also apply the time regulation idea from [11] to

guarantee Zeno-free triggers, which differs from the time-dependent trigger condition used

in [13]. Secondly, the unsynchronized clock case studied in Section 5 provides a gener-

alised framework for edge-event-based triggering scheme. The case involving synchronized

clocks thus can be regarded as a special case. In this generalised framework, each agent

measures the relative information and updates the control input under its own isolated

clock. Edge events are defined over an individual agent rather than two linked agents, i.e.

two agents linked by one edge do not update their control inputs synchronously. To the

authors’ knowledge, similar results are not found in the literature.

The rest of this report is structured as follows. Chapter 2 provides mathematical

notation and background on graph theory. In Chapter 3 to 5, the synchronized clock case

and the unsynchronized clock case are explained with details, respectively. Numerical

simulations are provided at the end of the each chapter to verify the effectiveness of

the proposed strategies. Finally, Chapter 6 concludes this paper and indicates a future

research topic.
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2 Preliminaries and background

2.1 Notations

In this part, some basic notations are introduced. Let N, R and Rn denote the natural

number set, real number set and the n-dimensional real Euclidean space, respectively.

The set of m× n real matrices is denoted by Rm×n. The empty set is denoted by ∅. The

transpose of a vector or matrix M is denoted by MT . λi(M) denotes the i-th smallest

eigenvalue of a symmetric matrix M . In is the n×n identity matrix. The Euclidean norm

of a vector, and the matrix norm induced by the Euclidean norm, is denoted by ‖ · ‖.

2.2 Graph theory

2.2.1 Undirected graph

A group of n agents is modelled by an undirected graph G with vertex set V = {v1, v2, . . . , vn}
and edge set E = {ε1, ε2, . . . , εm} ⊂ V×V . A path in graph G from vertex vi1 to vertex vij is

a sequence of distinct vertices starting from vi1 and ending with vij such that (vik , vik+1
) ∈

E for k = 1, 2, . . . , j − 1. A graph is called connected if there is a path between any two

vertices. Ni, the neighbour set of node vi, is defined as Ni = {vj ∈ V : (vi, vj) ∈ E}. The

adjacency matrix A ∈ Rn×n of graph G indicates the vertex adjacency relationship, with

entries aij = 1 if (vi, vj) ∈ E , and aij = 0 otherwise. Let D be the n×n diagonal matrix of

di’s, where the degree di of each vertex i is given by di =
∑n

j=1 aij. The Laplacian matrix

of G is a symmetric positive semi-definite matrix given by L = D − A. For a connected

graph, the eigenvalues of L are denoted by 0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L).

Label the m edges from 1 to m and each edge is assigned an arbitrary orientation.

Each entry of the m× n incidence matrix H of graph G are defined as

hra =


1, if node va is the terminal node of r-th edge

−1, if node va is the initial node of r-th edge

0, otherwise

(1)

The incidence matrix H can be divided into two sub matrices: the in-incidence matrix

and the out-incidence matrix. Following the definitions in [18], each entry of the m × n
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in-incidence matrix H⊙ [18] is denoted as

(h⊙)ra =

1, if node va is the terminal node of r-th edge

0, otherwise
(2)

and each entry of the m× n out-incidence matrix H⊗ is denoted as

(h⊗)ra =

−1, if node va is the initial node of r-th edge

0, otherwise
(3)

It is obvious that H = H⊙ +H⊗.

Let xi ∈ R denote a state that is assigned to agent i. The stack state vector x =

[x1, x2, · · · , xn]T ∈ Rn records all agents’ states. It is well known that the relative state

vector can be constructed as:

z = Hx (4)

where z = [z1, z2, · · · , zm]T ∈ Rm, with zr ∈ R being the relative state over εr.

Example 1. We show an example of an undirected graph to illustrate the derivation of

the equation described above. Consider an undirected graph with 4 nodes and 4 edges

shown in figure 1. For the purpose of writing an oriented incidence matrix, we assign an

orientation to each edge arbitrarily, which is shown in figure 2.

1 2

3 4

Figure 1: Undirected graph.
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1 2

3 4

Figure 2: Directed graph with assigned an orientation to each edge.

The orientated incidence matrix H for the undirected graph in figure 1 can be obtained

in (5). Furthermore, the associated in-incidence matrix H⊙ and out-incidence matrix

H⊗ can also been obtained in (6) and (7), respectively. It is obvious that the equation

H = H⊙ +H⊗ holds.

H =


−1 1 0 0

−1 0 1 0

0 0 −1 1

0 −1 0 1

 (5)

H⊙ =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

 (6)

H⊗ =


−1 0 0 0

−1 0 0 0

0 0 −1 0

0 −1 0 0

 (7)

The relative state vector is the defined according to (4). As an example, one has

z1 = x2− x1, i.e. the vector at edge ε1 is defined by the relative state between agent 2 and

agent 1.

For an undirected graph, we have the following lemma:

Lemma 2.1. [19] If graph G is undirected and connected, the Laplacian matrix L can be

given by L = HTH. The matrix HHT and the Laplacian matrix L both have non-negative

eigenvalues and moreover the same positive ones.
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Lemma 2.2. [19] If graph G is undirected and connected, then zTHHT z ≥ λ2(L)‖z‖2,
where λ2(L) refers to the smallest positive eigenvalue of Laplacian matrix L.

2.2.2 Directed graph

In order to analyze directed sensing topologies, it is necessary to refine some definitions

for the undirected graph. A group of n agents is modeled by an directed graph D with

vertex set V = {v1, v2, . . . , vn} and edge set E = {ε1, ε2, . . . , εm} ⊆ V ×V . An ordered pair

(vi, vj) denotes the directed edge from node vi to node vj, where vi is defined as initial

node and vj is defined as terminal node. A directed path of length s is a sequence of edges

(vi0 , vi1), . . . , (vis−1 , vis). A directed graph contains a directed spanning tree if there exists

at least one node having directed paths connected to all other nodes. A directed graph is

called strongly connected if and only if any two distinct nodes of D can be connected via

a directed path; weakly connected if D is connected when viewed as a disoriented directed

graph; quasi-strongly connected id D has a center from which any other node is reachable

[18]. If a directed graph D is quasi-strongly connected, it has a spanning tree [20]. Ni, the

neighbor set of node i, is defined as Ni = {vj ∈ V : (vj, vi) ∈ E}. The adjacency matrix

A ∈ Rn×n of graph D indicates the vertex adjacency relationship, with entries aij = 1 if

(vi, vj) ∈ E , and aij = 0 otherwise. Let D be the n × n diagonal matrix of di’s, where

the degree di of each vertex i is given by di =
∑n

j=1 aij. The Laplacian matrix of G is a

symmetric positive semi-definite matrix given by L = D−A. The m×n incidence matrix

H and in-incidence matrix H⊙ associated to directed graph D is defined the same as (1)

and (2). With incidence matrix H and in-incidence matrix H⊙, the Laplacian matrix L

can also given by L = HT⊙H. The edge Laplacian matrix Le can be given by Le = HHT⊙.

For directed sensing topologies, the relative state vector can be constructed as:

z = Hx (8)

where z = [z1, z2, · · · , zm]T ∈ Rm, with zr ∈ R being the relative state over εr.

For an directed graph, we have the following lemma:

Lemma 2.3. [18] If the underlying directed graph is quasi-strongly connected and associ-

ated with the edge Laplacian Le, then there exits a symmetric positive definite matrix P

satisfying the equation

PLe + LTe P = Q ≥ 0 (9)

where Q is a positive semi-definite matrix.
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Remark 2.1. For notation simplicity, we only consider one-dimensional case in this

paper. However, it is easy to extend our results to higher dimensional spaces by using

Kronecker multiplicity.

3 Synchronized clock case under undirected graph

3.1 Problem formulation

We assume that each agent is only equipped with relative position sensors, e.g. sonar or

ToF (time-of-flight) camera, to measure the relative states between its neighbours and

itself, in its own local coordinate frame. We further assume that all agents share a global

clock t, i.e. each agent in the multi-agent system (MAS) are activated simultaneously.

The sensing topology is captured by a fixed, undirected and connected graph G with

corresponding incidence matrix H, Laplacian matrix L and adjacency matrix A. For each

edge εr connecting agent i and agent j, both agent i and agent j measure the relative

state zr continuously.

The MAS we study in this paper consists of n single integrators that are labelled from

1 to n. The n agents are connected by m edges (sensing link), labelled from 1 to m. Let

xi(t) ∈ R denote the state of agent i, i = 1, 2, . . . n. The dynamics of agent i are described

by

ẋi(t) = ui(t), i = 1, 2, . . . , n, (10)

where ui(t) is the control input. The sequence of event-triggered executions for edge εr is

t0r = 0, t1r , . . . , tkr , . . .. At tkr , agent i and agent j linked by edge εr update their control

input simultaneously. This synchronous controller updating phenomenon results from the

fact that agents i and j share a global clock. We will provide detailed explanations about

this phenomenon in the main result subsection. For agent i, which is one agent of the

agent pair (i, j) linked by edge εr, the control input is designed as follows:

ui(t) =
∑
j∈Ni

(xj(tkr)− xi(tkr)) (11)

for t ∈ [tkr , tkr+1). We emphasize that only partial information xj(tkr) − xi(tkr) in the

control input is updated at tkr . Moreover, by observing (35), we see that control input

uses only relative information.
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The key problem in event-triggered control is to determine the next trigger time tkr+1,

which ensures the global control objective is achieved. In this section, we first design a

basic edge-event-based trigger algorithm. Then to overcome the drawback that the basic

algorithm can not exclude Zeno behaviour completely, an improved algorithm to achieve

Zeno-free triggers.

3.2 Main result

3.2.1 Basic algorithm

We first introduce a time-varying error er(t). For time t ∈ [tkr , tkr+1), the relative state

measurement error for edge εr is defined as

er(t) = zr(tkr)− zr(t), r = 1, . . . ,m (12)

We note that er(t) is actually calculated by agents i and j linked by εr separately using

their own on-board processors. However, since agents i and j share a global clock, the

values of ‖er(t)‖ calculated inside their processors are identical. In the design of basic

edge event algorithm, the strategy in [21] is used. That is, an edge event occurs when a

given trigger function is equal to zero. The trigger function is proposed as

f(er(t), zr(t)) = ‖er(t)‖ − βr‖zr(t)‖ (13)

with βr > 0. Note that agents i and j linked by εr share the same observations of ‖er(t)‖
and ‖zr(t)‖, which means equation (37) calculated inside both the agents’ processors reach

zero at the same time. This is the reason that the controller updates for agents i, j are

synchronous, presented in our problem formulation. We call (37) the edge trigger function.

Furthermore, every time an edge event is triggered, and in accordance with its definition

(36), the measurement error er(t) is reset to zero. Furthermore, it is obvious that the

trigger function only use relative information. Since both input and trigger condition use

only relative information, we conclude that the knowledge of a global coordinate frame is

not required in our framework.

Theorem 1. Consider a multi-agent system where each agent’s dynamics are described

by (34) with control input (35), trigger function (37). If βr satisfies 0 < βr <
λ2(L)
‖H‖2 , then

• (Average consensus) All agents’ states will converge to their initial average∑n
i=1 xi(0)/n.
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• (No Zeno behaviour for at least one edge) At any time t > 0, there exists at least

one edge that does not exhibit Zeno behaviour.

Proof. At the beginning of the proof, we clarify that the analysis requires the knowledge

of a global coordinate frame, i.e. the relative state vector z (4) is defined according to a

global coordinate frame. However, the implementation of the algorithm only requires the

knowledge of agent’s own local coordinate frame. We now prove the the first statement. It

is well-known that the compact form of continuous-time consensus dynamic is constructed

ẋ = −Lx = −HT z. Following this construction, the compact form of (35) can be written

as

u(t) = −HT


z1(tk1)

z2(tk2)
...

zm(tkm)

 (14)

where kr = arg maxkr∈N{tkr |tkr ≤ t}, r = 1, . . . ,m. By substituting the edge measurement

error (36), the compact form of the consensus dynamic can be written as

ẋ(t) = −HT z(t)−HT e(t) (15)

where z(t) = [z1(t), z2(t), . . . , zm(t)]T and e(t) = [e1(t), e2(t), . . . , em(t)]T .

Consider the following Lyapunov function

V (t) =
1

2
z(t)T z(t). (16)

The time derivative of the Lyapunov function (16) along (15) is

V̇ (t) = z(t)T ż(t) = z(t)THẋ(t)

= −z(t)THHT z(t)− z(t)THHT e(t).

From Lemma 2.2, we further obtain

V̇ (t) ≤ −λ2(L)‖z(t)‖2 + ‖H‖2‖e(t)‖‖z(t)‖

≤ −
(
λ2(L)‖z(t)‖ − ‖H‖2‖e(t)‖

)
‖z(t)‖.

(17)

Note that the edge measurement error er(t) is reset to zero as soon as the trigger function

(37) is equal to zero, which means ‖er(t)‖ ≤ βr‖zr(t)‖ holds through-out the evolution of
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the corresponding zr(t). Define βmax = max{βr : r = 1, 2, . . . ,m}, and it is obvious that

the inequality ‖e(t)‖ ≤ βmax‖z(t)‖ also holds. So we further have

V̇ (t) ≤ −(λ2(L)− βmax‖H‖2)‖z(t)‖2. (18)

If we enforce the value of βr to satisfy βr ∈ (0, λ2(L)‖H‖2 ), V̇ (t) < 0 can be guaranteed, which

means consensus can be reached as t→∞.

The above analysis shows that the system (??) will converge to a consensus point.

Now we prove that the consensus value is their initial average. Define average variable

x̄(t) =
1

n

n∑
i=1

xi(t).

The time derivative of x̄(t) is

˙̄x(t) =
1

n

n∑
i=1

ẋi(t) =
1

n

n∑
i=1

ui(t)

=
1

n

n∑
i=1

∑
j∈Ni

(xj(tkr)− xi(tkr)) .

Since j ∈ Ni represents the adjacency relation between agent i and agent j, the above

equation can be reformulated as

˙̄x(t) =
1

n

n∑
i=1

n∑
j=1

aij (xj(tkr)− xi(tkr)) .

Applying the symmetric property of undirected graph shows:

˙̄x(t) =
1

2n

n∑
i=1

n∑
j=1

aij (xj(tkr)− xi(tkr))

+
1

2n

n∑
j=1

n∑
i=1

aji (xi(tkr)− xj(tkr))

=
1

2n

n∑
i=1

n∑
j=1

(
aij(xj(tkr)− xi(tkr))

+ aji(xi(tkr)− xi(tkr))
)

= 0,

(19)

which means the average state ˙̄x(t) remains a constant. Note that the previous analysis

has shown that the consensus can be reached, so it is obvious that the final consensus

value is their initial average.
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For the second statement, it is noted that there holds ‖er(t)‖ ≤ ‖e(t)‖ for any r. Also

note that at any time t, there exists an edge r∗ such that ‖zr∗(t)‖2 ≥ 1
m
‖z(t)‖2. Then

one obtains

‖er∗(t)‖
‖zr∗(t)‖

≤
√
m
‖e(t)‖
‖z(t)‖

.

Following the similar argument proposed in [5] (see its proof of Theorem 4), we focus on

the dynamic of ‖e(t)‖/‖z(t)‖ and its time derivative d(‖e(t)‖/‖z(t))‖)/dt, where a strictly

positive lower bound of inter-edge-event interval can be obtained. This guarantees the

second statement.

3.2.2 Zeno-free algorithm

In order to avoid Zeno behaviour for all edges, we propose an alternative algorithm by

following the idea proposed in [11]. The next event time for edge εr is determined by

tkr+1 = tkr + max{τkr , br} (20)

where br is a strictly positive real number and τkr is determined by the trigger function

(37), described by:

τkr = inf
t>tkr
{t− tkr |f(er(t), zr(t)) = 0}. (21)

Remark 3.1. We note that this approach can eliminate Zeno behaviour since the inter-

edge-event time for edge εr is lower bounded by a strictly positive number br. However, in

the Zeno time for edge εr, both two connected agent i and j have to calculate the inter-

edge-event time with high frequency, causing great burden to processors of agents. The

trade-off for the inter-edge-event time should be concerned.

Theorem 2. Consider a multi-agent system where each agent’s dynamics are described

by (34) with control input (35) and the edge trigger condition (20). Let η1 and η2 be

positive real numbers satisfying η1 + η2 < 1. If βr ≤ η1(λ2(L)/‖H‖2) for all edges, br is

strictly positive and satisfies

br ≤
η2λ2(L)

‖H‖2 (
√
m‖H‖2 + η2λ2(L))

. (22)

• (Average consensus) All agents’ states converge to their initial average.

• (Zeno-free triggers) At any time t > 0, no edge will exhibit Zeno behaviour.
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Proof. We continue using the Lyapunov function (??) and omit several steps of the time

derivative calculation. According to equation (17), we obtain

V̇ (t) ≤ −
(
λ2(L)‖z(t)‖ − ‖H‖2‖e(t)‖

)
‖z(t)‖

= −

λ2(L)

√√√√ m∑
r=1

‖zr(t)‖2

−‖H‖2
√√√√ m∑

r=1

‖er(t)‖2

 ‖z(t)‖.

(23)

If we can guarantee that

m∑
r=1

‖er(t)‖2 ≤ η2
(
λ2(L)

‖H‖2

)2 m∑
r=1

‖zr(t)‖2 (24)

with η ∈ (0, 1), then it yields

V̇ (t) ≤ −

(1− η)λ2(L)

√√√√ m∑
r=1

‖zr(t)‖2

 ‖z(t)‖ < 0. (25)

According to (20), we know that at any time t > 0, the determination of inter-edge-event

time of edge εr is either by τkr or br. Let S1(t) and S2(t) be the edge sets consisting of

edges whose next inter-edge-event time at t is τkr and br, respectively. Then it is obvious

that S1(t)
⋃
S2(t) = {ε1, . . . , εm} and S1(t)

⋂
S2(t) = ∅. To guarantee (51), we further

propose the following two conditions:∑
εr∈S1(t)

‖er(t)‖2 ≤ η21

(
λ2(L)

‖H‖2

)2 ∑
εr∈S1(t)

‖zr(t)‖2

≤ η21

(
λ2(L)

‖H‖2

)2 m∑
r=1

‖zr(t)‖2
(26)

and ∑
εr∈S2(t)

‖er(t)‖2 ≤ η22

(
λ2(L)

‖H‖2

)2 ∑
εr∈S2(t)

‖zr(t)‖2

≤ η22

(
λ2(L)

‖H‖2

)2 m∑
r=1

‖zr(t)‖2
(27)

where η1 and η2 are strictly positive real numbers under the condition that η1+η2 = η < 1.

For each edge in S1(t), if we let βr ≤ η1(λ2(L)/‖H‖2), then condition (52) will holds for

all t. For condition (53), if we can guarantee

‖er(t)‖2 ≤
η22
m

(
λ2(L)

‖H‖2

)2 m∑
j=1

‖zj(t)‖2, (28)
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then condition (53) will holds. Let ζ =
η22
m

(
λ2(L)
‖H‖2

)2
, (54) can be rewritten as

‖er(t)‖ ≤
√
ζ‖z(t)‖. (29)

Since ζ is strictly positive, the evolution time of ‖er(t)‖/‖z(t)‖ from 0 to
√
ζ is strictly

positive (because ‖z(t)‖ 6= 0, ‖er(t)‖ evolutes from 0 at tkr). By finding an upper bound

Br of this evolution time, we can determine a strictly positive time br ≤ Br. Then

condition (55) can always be guaranteed if the evolution time of ‖er(t)‖/‖z(t)‖ is br. To

find Br, we first estimate the time derivative of ‖er(t)‖/‖z(t)‖ :

d

dt

‖er‖
‖z‖

=
eTr ėr
‖er‖‖z‖

− ‖er‖z
T ż

‖z‖3

≤ ‖ėr‖
‖z‖

+
‖er‖
‖z‖
‖ż‖
‖z‖

.

(30)

According to (36), one can deduce that ėr = −żr. So it is obvious that

d

dt

‖er‖
‖z‖

≤ ‖ż‖
‖z‖

+
‖e‖
‖z‖
‖ż‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖ż‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖Hẋ‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖HHT (z(t) + e(t)) ‖

‖z‖

≤ ‖HHT‖(1 +
‖e‖
‖z‖

)2 = ‖H‖2(1 +
‖e‖
‖z‖

)2.

(31)

Thus it holds that

d

dt

‖er‖
‖z‖

≤ ‖H‖2(1 +
‖e‖
‖z‖

)2.

Similar time derivative of ‖e(t)‖/‖z(t)‖ yields

d

dt

‖e‖
‖z‖
≤ ‖H‖2(1 +

‖e‖
‖z‖

)2.

It is noticed that ‖e‖/‖z‖ always upper bounds ‖er‖/‖z‖ and both of them are non-

negative. Now we conclude that ‖er‖/‖z‖ < g(t, g0), where g(t, g0) is the solution of

ġ(t) = ‖H‖2(1 + g(t))2, g0 = 0. Thus the lower bound of evolution time of ‖er‖/‖z‖ from

15



0 to
√
ζ is

Br =

√
ζ

‖H‖2(1 +
√
ζ)

=

√
η22
m

(
λ2(L)
‖H‖2

)2
‖H‖2

(
1 +

√
η22
m

(
λ2(L)
‖H‖2

)2)

=
η2λ2(L)

‖H‖2 (
√
m‖H‖2 + η2λ2(L))

.

(32)

We can choose a strictly positive real time br which is satisfied with br ≤ Br to guarantee

(53) for each edge in S2(t). Since br is strictly positive, it is straightforward to conclude

that Zeno behaviour is excluded for each edge. Moreover, since condition (51) can be

ensured, we also conclude that consensus can be reached. Note that (19) still holds in

the Zeno-free algorithm, which means the final consensus value remains to be the initial

average.

3.3 Simulation

The MAS considered in the simulation consists of 5 agents. The sensing topology is

described by Fig. 3 whose incidence matrix is chosen as

H =



−1 1 0 0 0

0 −1 1 0 0

−1 0 1 0 0

0 0 1 0 −1

0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 −1

−1 0 0 1 0


(33)

The initial states for all agents are set as x1(0) = −3.2, x2(0) = 2.1, x3(0) = −2.7,

x4(0) = 4.3 and x5(0) = 1.6. The parameter βr for the basic edge-event algorithm

is selected as βr = 0.34 for each edge trigger function. In the Zeno-free edge-event

algorithm, the parameter η1 and η2 are chosen as η1 = 0.85 and η2 = 0.14, then we also

set βr = 0.34 for the trigger function (21) in the Zeno-free trigger algorithm. The minimal

inter-edge-event time br is chosen as br = 0.0039s, which satisfies the condition (22).
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Figure 4: Comparison of state trajectories.
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Figure 5: Comparison of edge event times.

The state trajectories and trigger performance for both the basic algorithm and the

Zeno-free algorithm are compared in Fig. 4 and 5, respectively. Table 1 compares the edge

event numbers for each edge between the the basic algorithm and the Zeno-free algorithm.

Note that the minimum inter-edge-event time interval we observed in the simulation of the

basic algorithm is 1×10−6s, which is the numerical accuracy we set in Matlab. This dense

triggering behaviour is observed when the state term zr(t) crosses zero, which supports
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Table 1: Comparison of numbers of edge events.

Number of edge Basic Zeno-free

Edge 1 85 39

Edge 2 87 41

Edge 3 98 70

Edge 4 24 24

Edge 5 26 26

Edge 6 31 31

Edge 7 25 25

Edge 8 26 26

Total 402 282

the analysis of Zeno behaviour in [14] (see its Remark 2). The minimum inter-edge-event

time interval observed in the simulation of the Zeno-free algorithm is 0.0039s, which

corresponds to the value of br calculated in the last paragraph.

Remark 3.2. Since the choice of βr is quite conservative, depending on the global in-

formation of sensing topology. i.e. ‖H‖ and λ2(L), an alternative Lyapunov defined by

group disagreement has been proposed to relax the limitation of βr for future work.

4 Synchronized clock case under directed graph

4.1 Problem formulation

In this section, we assume that continuous local relative information is available to each

agent and all agents share a global clock t. The sensing topology is captured by a fixed,

directed and quasi-strongly connected graph D with associated incidence matrix H, in-

incidence matrix H⊙, Laplacian matrix L, edge Laplacian matrix. For each information

link εr connecting agent i and agent j, the terminal agent can measure the relative state

to terminal agent.

The MAS we study in this report consists of n signal integrators that are labelled from

1 to n. The n agents are connected by m edges (sensing link), labelled from 1 to m.

Let xi(t) ∈ R denote the state of agent i, i = 1, 2, . . . , n. The dynamics of agent i are
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described by

ẋi(t) = ui(t), i = 1, 2, . . . , n, (34)

where ui(t) is the control input. The sequence of event-triggered executions for edge εr

is t0r = 0, t1r , . . . , tkr , . . .. At tkr , only the terminal agent of edge εr updates its control

protocol. For agent i, which is the terminal agent of the agent pair (j, i) linked by edge

εr, the control protocol is designed as follows:

ui(t) =
n∑
j=1

(h⊙)ji (xj(tkr)− xi(tkr)) (35)

for t ∈ [tkr , tkr+1). We emphasize that only partial information xj(tkr) − xi(tkr) in the

control protocol is updated at tkr . Moreover, by observing (35), we see that control

protocol uses only relative information.

The key problem in event-triggered control is to determine the next trigger time tkr+1,

which ensures the global control objective is achieved. In this section, we first design a

basic edge-event-based trigger algorithm. Then to overcome the drawback that the basic

algorithm can not exclude Zeno behaviour completely, an improved algorithm to achieve

Zeno-free triggers.

4.2 Main result

4.2.1 Basic trigger scheme

We first introduce a time-varying error er(t). For time t ∈ [tkr , tkr+1), the relative state

measurement error for edge εr is defined as

er(t) = zr(tkr)− zr(t), r = 1, . . . ,m (36)

We note that er(t) is only calculated by the initial agent i of edge εr, where agent j is the

terminal agent. In the design of basic edge event algorithm, the strategy in [21] is used.

That is, an edge event occurs when a given trigger function reaches zero. The trigger

function is proposed as

f(er(t), zr(t)) = ‖er(t)‖ − βr‖zr(t)‖ (37)

with βr > 0. Furthermore, every time an edge event is triggered, and in accordance

with its definition (36), the measurement error er(t) is reset to zero. What’s more, it is
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obvious that the trigger function only use relative information. Since both protocol and

trigger condition use only relative information, we conclude that the knowledge of a global

coordinate frame is not required in our framework.

Theorem 3. Consider a multi-agent system where each agent’s dynamics are described

by (34) with control protocol (35), trigger function (37). Suppose the sensing topologies D
are quasi-strongly connected. For any given positive semi-definite matrix Q. If βr satisfies

0 < βr <
λ2(Q)
‖Q‖ , then

• (Consensus) All agents’ states will reach consensus.

• (No Zeno behaviour for at least one edge) At any time t > 0, there exists at least

one edge that does not exhibit Zeno behaviour.

Proof. At the beginning of the proof, we clarify that the analysis requires the knowledge

of a global coordinate frame, i.e. the relative state vector z (4) is defined according to a

global coordinate frame. However, the implementation of the algorithm only requires the

knowledge of agent’s own local coordinate frame. We now prove the the first statement. It

is well-known that the compact form of continuous-time consensus dynamic is constructed

ẋ = −Lx = −HT⊙z. Following this construction, the compact form of (35) can be written

as

u(t) = −HT⊙


z1(tk1)

z2(tk2)
...

zm(tkm)

 (38)

where kr = arg maxkr∈N{tkr |tkr ≤ t}, r = 1, . . . ,m. By substituting the edge measurement

error (36), the compact form of the consensus dynamic can be written as

ẋ(t) = −HT⊙z(t)−HT⊙e(t) (39)

where z(t) = [z1(t), z2(t), . . . , zm(t)]T and e(t) = [e1(t), e2(t), . . . , em(t)]T . Left multiplying

an in-incidence matrix H for both side of (39), we can obtained so called edge dynamics

of system, that is

ż(t) = −HHT⊙z(t)−HHT⊙e(t)
= −Lez(t)− Lee(t)

(40)
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Consider the following Lyapunov function,

V (t) = zT (t)Pz(t), (41)

where P is a symmetric positive definite matrix calculated by lemma 2.3.

The time derivative of the Lyapunov function (41) alone (39) is

V̇ (t) = żT (t)Pz(t) + zT (t)P ż(t)

= (−Lez(t)− Lee(t))T Pz(t) + zT (t)P (−Lez(t)− Lee(t))

=
(
−zT (t)LTe − eT (t)LTe

)
Pz(t) + zT (t)P (−Lez(t)− Lee(t))

= −zT (t)LTe Pz(t)− eT (t)LTe Pz(t)− zT (t)PLez(t)− zT (t)PLee(t)

= −zT (t)
(
LTe P + PLe

)
z(t)− 1

2
zT (t)

(
LTe P + PLe

)
e(t)

(42)

From lemma 2.3, we can further obtain

V̇ (t) ≤ −λ2(Q)‖z(t)‖2 + ‖z(t)‖‖LTe P + PLe‖‖e(t)‖

≤ − (λ2(Q)‖z(t)‖ − ‖Q‖‖e(t)‖) ‖z(t)‖
(43)

Note that the edge measurement error er(t) is reset to zero once the trigger function (37)

reaches to zero, which indicates that ‖er(t)‖ ≤ βr‖zr(t)‖ holds through the evolution

of the associated edge zr(t). Let βmax = max{βr : r = 1, 2, . . . ,m}, and the inequality

‖e(t)‖ ≤ βmax‖z(t)‖ also holds. Thus we can further obtain that

V̇ (t) ≤ − (λ2(Q)− βmax‖Q‖) ‖z(t)‖2 (44)

If the value of βr is enforced to satisfied βr ∈ (0, λ2(Q)
‖Q‖ ), V̇ (t) ≤ 0 can be guaranteed,

indicating that consensus can be reached as t→∞.

Now we turn to the second statement. Note that there holds ‖er(t)‖ ≤ ‖e(t)‖ for any

r. Also note that at any time t, there exists an edge r∗ such that ‖zr∗(t)‖2 ≥ 1
m
‖z(t)‖2.

Then one yields

‖er∗(t)‖
‖zr∗(t)‖

≤
√
m
‖e(t)‖
‖z(t)‖ (45)

Following the similar argument proposed in [5] (see the proof of Theorem 4), we focus on

the dynamic of ‖e(t)‖/‖z(t)‖ and its time derivative d(‖e(t)‖/‖z(t))‖)/dt, where a strictly

positive lower bound of inter-edge-event interval can be obtained. This guarantees the

second statement.
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4.2.2 Zeno-free trigger scheme

In order to avoid Zeno behaviour for all edges, an alternative algorithm is proposed. The

next event time for edge εr is determined by

tkr+1 = tkr + max{τkr , br}, (46)

where br is a strictly real number and τkr is determined by the trigger function (37), which

is described by:

τkr = inf
t>tkr
{t− tkr |f(er(t), zr(t)) = 0}. (47)

Theorem 4. Consider a multi-agent system where each agent’s dynamics are described

by (34) with control protocol (35), and edge trigger condition (46). Suppose the sensing

topologies D are quasi-strongly connected. Suppose the sensing topologies D are quasi-

strongly connected. For any given positive semi-definite matrix Q. Let η1 and η2 be

positive real numbers satisfying η1 + η2 < 1. If βr ≤ η1(λ2(Q)/‖Q‖) for all edges, br is

strictly positive and satisfies

br ≤
η2λ2(Q)

‖Le‖ (
√
m‖Q‖+ η2λ2(Q))

. (48)

• (Consensus) All agents’ states will reach consensus.

• (Zeno free triggering) At any time t > 0, no edge will exhibit Zeno behaviour.

Proof. We continue using the Lyapunov function (41) and omit several steps of the time

derivative calculation. According to equation (43), we obtain

V̇ (t) ≤ − (λ2(Q)‖z(t)‖ − ‖Q‖‖e(t)‖) ‖z(t)‖

= −

λ2(Q)

√√√√ m∑
r=1

‖zr(t)‖2

−‖Q‖

√√√√ m∑
r=1

‖er(t)‖2

 ‖z(t)‖.

(49)

If we can guarantee that

m∑
r=1

‖er(t)‖2 ≤ η2
(
λ2(Q)

‖Q‖

)2 m∑
r=1

‖zr(t)‖2 (50)
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with η ∈ (0, 1), then it yields

V̇ (t) ≤ −

(1− η)λ2(Q)

√√√√ m∑
r=1

‖zr(t)‖2

 ‖z(t)‖ < 0. (51)

According to (46), we know that at any time t > 0, the determination of inter-edge-event

time of edge εr is either by τkr or br. Let S1(t) and S2(t) be the edge sets consisting of

edges whose next inter-edge-event time at t is τkr and br, respectively. Then it is obvious

that S1(t)
⋃
S2(t) = {ε1, . . . , εm} and S1(t)

⋂
S2(t) = ∅. To guarantee (51), we further

propose the following two conditions:

∑
εr∈S1(t)

‖er(t)‖2 ≤ η21

(
λ2(Q)

‖Q‖

)2 ∑
εr∈S1(t)

‖zr(t)‖2

≤ η21

(
λ2(Q)

‖Q‖

)2 m∑
r=1

‖zr(t)‖2
(52)

and ∑
εr∈S2(t)

‖er(t)‖2 ≤ η22

(
λ2(Q)

‖Q‖

)2 ∑
εr∈S2(t)

‖zr(t)‖2

≤ η22

(
λ2(Q)

‖Q‖

)2 m∑
r=1

‖zr(t)‖2
(53)

where η1 and η2 are strictly positive real numbers under the condition that η1+η2 = η < 1.

For each edge in S1(t), if we let βr ≤ η1(λ2(Q)/‖Q‖), then condition (52) will holds for

all t. For condition (53), if we can guarantee

‖er(t)‖2 ≤
η22
m

(
λ2(Q)

‖Q‖

)2 m∑
j=1

‖zj(t)‖2, (54)

then condition (53) will holds. Let ζ =
η22
m

(
λ2(Q)
‖Q‖

)2
, (54) can be rewritten as

‖er(t)‖ ≤
√
ζ‖z(t)‖. (55)

Since ζ is strictly positive, the evolution time of ‖er(t)‖/‖z(t)‖ from 0 to
√
ζ is strictly

positive (because ‖z(t)‖ 6= 0, ‖er(t)‖ evolutes from 0 at tkr). By finding an upper bound

Br of this evolution time, we can determine a strictly positive time br ≤ Br. Then

condition (55) can always be guaranteed if the evolution time of ‖er(t)‖/‖z(t)‖ is br. To
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find Br, we first estimate the time derivative of ‖er(t)‖/‖z(t)‖ :

d

dt

‖er‖
‖z‖

=
eTr ėr
‖er‖‖z‖

− ‖er‖z
T ż

‖z‖3

≤ ‖ėr‖
‖z‖

+
‖er‖
‖z‖
‖ż‖
‖z‖

≤ ‖ż‖
‖z‖

+
‖e‖
‖z‖
‖ż‖
‖z‖

.

(56)

According to (36), one can deduce that ėr = −żr. So it is obvious that

d

dt

‖er‖
‖z‖

≤ ‖ż‖
‖z‖

+
‖e‖
‖z‖
‖ż‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖ż‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖Hẋ‖
‖z‖

= (1 +
‖e‖
‖z‖

)
‖Le (z(t) + e(t)) ‖

‖z‖

≤ ‖Le‖(1 +
‖e‖
‖z‖

)2.

(57)

Thus it holds that

d

dt

‖er‖
‖z‖

≤ ‖Le‖(1 +
‖e‖
‖z‖

)2.

Similar time derivative of ‖e(t)‖/‖z(t)‖ yields

d

dt

‖e‖
‖z‖
≤ ‖Le‖(1 +

‖e‖
‖z‖

)2.

It is noticed that ‖e‖/‖z‖ always upper bounds ‖er‖/‖z‖ and both of them are non-

negative. Now we conclude that ‖er‖/‖z‖ < g(t, g0), where g(t, g0) is the solution of

ġ(t) = ‖H‖2(1 + g(t))2, g0 = 0. Thus the lower bound of evolution time of ‖er‖/‖z‖ from

0 to
√
ζ is

Br =

√
ζ

‖Le‖(1 +
√
ζ)

=

√
η22
m

(
λ2(Q)
‖Q‖

)2
‖Le‖

(
1 +

√
η22
m

(
λ2(Q)
‖Q‖

)2)

=
η2λ2(Q)

‖Le‖ (
√
m‖Q‖+ η2λ2(Q))

.

(58)

We can choose a strictly positive real time br which is satisfied with br ≤ Br to guarantee

(53) for each edge in S2(t). Since br is strictly positive, it is straightforward to conclude

that Zeno behaviour is excluded for each edge. Moreover, since condition (51) can be

ensured, we also conclude that consensus can be reached.
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4.3 Simulation

The MAS considered in the simulation consists of 5 agents. The sensing topology is

described by Fig. 6 whose incidence matrix is chosen as

H =



−1 1 0 0 0

0 1 0 0 −1

0 −1 0 1 0

0 −1 1 0 0

0 0 1 −1 0

0 0 −1 0 1


(59)

The initial states for all agents are set as x1(0) = −3.5, x2(0) = 4.1, x3(0) = 2.7,

x4(0) = −4.3 and x5(0) = 0.6. The positive semi-definite matrix Q is selected as

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(60)

Thus the parameter βr for the basic edge-event algorithm is selected as βr = 0.6 for each

edge trigger function. In the Zeno-free edge-event algorithm, the parameter η1 and η2 are

chosen as η1 = 0.71 and η2 = 0.28, then we also set βr = 0.6 for the trigger function

(47) in the Zeno-free trigger algorithm. The minimal inter-edge-event time br is chosen

as br = 0.0336s, which satisfies the condition (48).
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Figure 6: Directed graph topology.
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Figure 7: Comparison of state trajectories.
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Figure 8: Comparison of edge event times.

Table 2: Comparison of numbers of edge events.

Number of edge Basic Zeno-free

Edge 1 12 13

Edge 2 52 18

Edge 3 56 24

Edge 4 53 22

Edge 5 104 91

Edge 6 53 19

Total 330 187

The state trajectories and trigger performance for both the basic algorithm and the

Zeno-free algorithm are compared in Fig. 7 and 8, respectively. Table 2 compares the edge

event numbers for each edge between the basic algorithm and the Zeno-free algorithm.

Note that the minimum inter-edge-event time interval we observed in the simulation of the
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basic algorithm is 1×10−6s, which is the numerical accuracy we set in Matlab. This dense

triggering behaviour is observed when the state term zr(t) crosses zero, which supports

the analysis of Zeno behaviour in [14] (see its Remark 2). The minimum inter-edge-event

time interval observed in the simulation of the Zeno-free algorithm is 0.0383s, which

corresponds to the value of br calculated in the last paragraph.

5 Unsynchronized clock case

5.1 Problem formulation

In this section, we still assume that continuous local relative information is available to

each agent. Graph G is also undirected and connected. Let t, t(0) = 0 denote the global

clock. However, each agent i has its own isolated, local clock ti, i = 1, 2, . . . , n. Let

ti(0) ≥ 0 denote the initial value for each ti and ti(0),∀i is not necessarily identical. That

is to say, agents i and j linked by edge εr start to measure the relative information and

update their control inputs under their own clocks with non-identical initial time. The

main challenge in this section arises from the fact that agent i and j linked by εr do not

update their control inputs synchronously.

The MAS we study in this section also consists of n single integrators labelled from 1

to n. Let xi(t
i) ∈ R denote the state of agent i, i = 1, 2, . . . n. The dynamics of agent i

are given as

ẋi(t
i) = ui(t

i), i = 1, 2, . . . , n, (61)

where ui(t
i) is control input.

Note that the trigger times of the agents i and j linked by εr are non-identical, we

define two time sequences of event-triggered executions for agents i and j, respectively,

which are ti0ir , t
i
1ir
, . . . , tikir , . . . for agent i under ti and tj

0jr
, tj

1jr
, . . . , tj

kjr
, . . . for agent j under

tj. tikir denotes the time of k-th edge event of agent i triggered over edge εr under agent i’s

clock. Both agents update their control inputs at their own edge event times. For agent

i, which is one agent of the agent pair (i, j) linked by εr, the control input is designed as

follows:

ui(t
i) =

∑
j∈Ni

(
xj(t

i
kir

)− xi(tikir)
)
, i = 1, 2, . . . , n (62)

for ti ∈ [tikir , t
i
kir+1). In this section, we will aim to design a new Zeno-free trigger scheme

to determine the trigger times.
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5.2 Main result

For time ti ∈ [tikir , t
i
kir+1), agent i, which is one agent of edge εr, measures the relative states

zir(t
i) continuously along its own time axis and the relative state measurement error is

defined as

eir(t
i) = zir(t

i
kir

)− zir(ti). (63)

Since ti0ir = tj
0jr

can not be guaranteed for agent i and j linked by εr, it is obvious that eir(t
i)

is not supposed to be equal to ejr(t
j). When combined the trigger conditions proposed

below, it is implied that the linked agents i and j update their controllers asynchronously.

We follow the same method used in the Zeno-free algorithm of Section 3 to determine

the next edge event time over εr for agent i:

tikir+1 = tikir + max{τ ikir , br}. (64)

The trigger function used to determine τ ikir is proposed as follows:

f(eir(t
i), zir(t

i)) = ‖eir(ti)‖ − βir‖zir(ti)‖ (65)

where βir > 0. As usual, every time the trigger condition (64) is satisfied, eir(t
i) is reset

to zero.

Theorem 5. Consider system (61) with control input (62), trigger function (64). Let η1

and η2 be positive real numbers and η1 + η2 < 1. Let α = max{‖HHT⊗‖, ‖HHT⊙‖}. If

βir ≤ η1λ2(L)/2α for all edges, br is strictly positive and satisfies

br ≤
η2λ2(L)

2α(2mα + η2λ2(L))
. (66)

Then

• (Consensus) All agents’ states will reach consensus.

• (Zeno-free triggers) No agent will exhibit Zeno behaviour.

Proof. It is obvious that we do not need to consider the convergence of the system before

all agents are activated. Thus we introduce a new global clock t′, where t′(0) = max{ti(0) :

i = 1, 2, . . . , n} indicating the time point that all agents are activated to achieve consensus.

Note that the compact form (38) cannot be used here because agents i and j linked by

edge εr update asynchronously. New variables are required to be defined to construct the

compact form of the system.
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Note that all the state variables used and defined in the proof are with respect to

a global coordinate frame. We start the analysis from the continuous-time consensus

dynamic ẋ(t′) = −HT z(t′), as well. In this dynamic, the entry hTar of HT can be explained

as follows:

hTar =


1, agent a’s knowledge of zr(t

′) is −zr(t′)

−1, agent a’s knowledge of zr(t
′) is zr(t

′)

0, agent a does not access zr(t
′).

(67)

Note that hTar = hra, hra is the entry of H. According to the definition of hra in (67), we

have the following conclusions: if agent a is the terminal agent of edge εr, its knowledge

of zr(t
′) is −zr(t′); if agent a is the initial agent of edge εr, its knowledge of zr is zr(t

′).

Let the relative states assigned to initial agent i and terminal agent j linked by edge εr be

respectively described by zµr and zνr , where the initial agent and terminal agent are pre-

assigned by incidence matrix H. It is obvious that zµr (t′) = zνr (t′) = zr(t
′). Note that there

are m initial agents and m terminal agents in the MAS since the graph G has m edges.

Then it is reasonable to rewrite the consensus dynamic as ẋ = −HT⊗zµ(t′) − HT⊙zν(t′),
where zµ = [zµ1 , z

µ
2 , . . . , z

µ
m]T and zν = [zν1 , z

ν
2 , . . . , z

ν
m]T .

Let t′
kµr

and t′kνr re-denote the latest r-th edge event time instants of initial agent i

and terminal agent j linked by edge εr, respectively. It is assumed that t′
kµr
, t′kνr ≥ t′(0).

Following the consensus dynamic constructed in the last paragraph, the compact form of

the control input (62) can be expressed as:

u(t′) = −HT⊗


zµ1 (t′

kµ1
)

zµ2 (t′
kµ2

)
...

zµm(t′
kµm

)

−HT⊙


zν1 (t′kν1 )

zν2 (t′kν2 )
...

zνm(t′kνm)

 , (68)

which is the key step of the analysis in the whole proof.

According to (63), we define two stack measurement error vectors eµ = [eµ1 , e
µ
2 , . . . , e

µ
m]T

and eν = [eν1, e
ν
2, . . . , e

ν
m]T are defined for all of the initial agents and terminal agents,

respectively. The compact form of the consensus dynamic at t′ can be formulated as

ẋ(t′) = −HT⊗z(t′)−HT⊙z(t′)−HT⊗eµ(t′)−HT⊙eν(t′)
= −HT z(t′)−HT⊗eµ(t′)−HT⊙eν(t′) (69)

Now reconsider the Lyapunov function

V (t′) =
1

2
z(t′)T z(t′)
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Its time derivative along (69) is

V̇ (t′) = z(t′)THẋ(t′)

= −z(t′)THHT z(t′)− z(t′)THHT⊗eµ(t′)

− z(t′)THHT⊙eν(t′)
By recalling Lemma 2.2, it yields that

V̇ (t′) ≤ −λ2(L)‖z(t′)‖2 + ‖HHT⊗‖‖z(t′)‖‖eµ(t′)‖

+ ‖HHT⊙‖‖z(t′)‖‖eν(t′)‖

= −
(
λ2(L)‖z(t′)‖ − ‖HHT⊗‖‖eµ(t′)‖

−‖HHT⊙‖‖eν(t′)‖) ‖z(t′)‖

Note that ‖eµ(t′)‖ =
√∑m

r=1 ‖e
µ
r (t′)‖2 and ‖eν(t′)‖ =

√∑m
r=1 ‖eνr(t′)‖2. Let α = max{‖HHT⊗‖,

‖HHT⊙‖}. If we can ensure the following condition√√√√ m∑
r=1

‖eµr (t′)‖2 +

√√√√ m∑
r=1

‖eνr(t′)‖2 ≤
λ2(L)

α
‖z(t′)‖ (70)

then consensus will be achieved.

At t′, let S1
µ(t′) and S2

µ(t′) be the edge sets that their linked initial agents will trigger

the edge events at t′
kµr

+ τkµr and t′
kµr

+ br, respectively. It is satisfied that S1
µ(t′)

⋃
S2
µ(t′) =

{ε1, . . . , εm} and S1
µ(t′)

⋂
S2
µ(t′) = ∅. Similarly, let S1

ν(t
′) and S2

ν(t
′) denote the edge sets

that their linked terminal agents will trigger the edge events at t′
kµr

+ τkµr and t′
kµr

+ br,

respectively. it is also satisfied that S1
ν(t
′)
⋃
S2
ν(t
′) = {ε1, . . . , εm} and S1

µ(t′)
⋂
S2
µ(t′) = ∅.

Note that condition (70) can be guaranteed if√ ∑
r∈S1

µ(t
′)

‖eµr (t′)‖2 +

√ ∑
r∈S1

ν(t
′)

‖eνr(t′)‖2 ≤
η1λ2(L)

α
‖z(t′)‖ (71)

and √ ∑
r∈S2

µ(t
′)

‖eµr (t′)‖2 +

√ ∑
r∈S2

ν(t
′)

‖eνr(t′)‖2 ≤
η2λ2(L)

α
‖z(t′)‖ (72)

where η1, η2 > 0 and η1 + η2 < 1.

According to the trigger function (65) and the fact that the measurement error (63)

is reset as soon as the value of the trigger function reaches zero, it is enough to imply

‖eµr (t′)‖ ≤ βmax‖zr(t′)‖ and ‖eνr(t′)‖ ≤ βmax‖zr(t′)‖, where βmax = max{βir}. Furthermore,
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by recalling that S1
µ(t′) and S1

ν(t
′) are subsets of edge set E , we obtain card{S1

µ(t′)},
card{S1

ν(t
′)} ≤ m. The above analysis indicates that the upper bound of the left-

hand side term in (71) can be calculated as 2
√∑m

r=1 β
2
max‖zr(t′)‖2, which is equal to

2βmax‖z(t′)‖. If we enforce βir to satisfy βir <
η1λ2(L)

2α
, then condition (71) is always satis-

fied.

For condition (72), since card{S2
µ(t′)} ≤ m, we obtain

√∑
r∈S2

µ(t
′) ‖e

µ
r (t′)‖2 ≤

∑m
r=1 ‖eµr (t′)‖.

According to the same arguments, we also get
√∑

r∈S2
ν(t
′) ‖e

µ
r (t′)‖2 ≤

∑m
r=1 ‖eνr(t′)‖.

The upper bound of the left-hand side term in (72) is thus obtained as
∑m

r=1 ‖eµr (t′)‖ +∑m
r=1 ‖eνr(t′)‖. Note that eµr (t′) and eνr(t

′) are actually the measurement error eir(t
′) de-

fined in (63). By enforcing ‖eir(t′)‖ ≤
η2λ2(L)
2mα

‖z(t′)‖, condition (72) can be ensured. Now

we are ready to determine Br. By following the similar process from (56) to (58) in the

last subsection, the lower bound Br is obtained as

Br =
η2λ2(L)

2α(2mα + η2λ2(L))
(73)

For each agent i, the next edge-triggering time tikir+1 can be set as tikir + br, where br ≤ Br,

if τ ikir determined by trigger function (65) is less than br. By choosing suitable βr and br,

the aims of both consensus and Zeno-free triggers can be achieved.

5.3 Simulation

The sensing topology and the initial states of all agents are set to be same to with those

in the simulation of Section 3. Parameters η1 and η2 are chosen as η1 = 0.8 and η2 = 0.19.

Thus βir and minimum inter-event time br are calculated as βir = 0.22 and br = 0.0011s,

respectively. The activated times for all agents are chosen as t1(0) = 0.4, t2(0) = 0.7,

t3(0) = 0.1, t4(0) = 0.2 and t5(0) = 0.8. Fig. 9 illustrates the trajectories of the MAS. We

can see consensus can be reached. Fig. 10 shows the trigger time instants for both agent

1 and agent 2 over edge ε1. It can be observed that their trigger times are asynchronous.
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Figure 9: State trajectories.
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Figure 10: Edge event times of both agent 1 and agent 2 triggered over edge ε1.

6 Conclusion and future work

6.1 Conclusion

In this report, we propose novel Zeno-free, edge-event-based algorithms to achieve multi-

agent consensus under both synchronized clocks and unsynchronized clocks. In the syn-

chronized clock case, we show that average consensus can be achieved under our proposed

algorithms even though each agent can only measure the relative information in its own

local coordinate frame via undirected sensing topologies. In addition, the MAS is also

proved to reach consensus in directed sensing topologies. In the study of the unsynchro-

nized clock case, each agent not only uses the relative information, but also works under

its own clock that is not necessarily synchronized with others’ clocks. We show that

consensus can be achieved with Zeno-free triggers by using our proposed algorithm.
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6.2 Future work

The near future research topics will be discussed in the part.

• Edge-event-based control for complex dynamics

Since the dynamics of real autonomous systems are quiet complex, the multi-agent

system modeled by complex dynamics should be investigated. We first consider

agents by second-order dynamics, and then extend the result to general nonlinear

dynamics. It is obvious that complex systems pose more theoretical challenges than

the networked systems modeled by simple dynamics.

• Edge-event-based control for unsynchronized multi-agent system with

sampled-data setting

In event-based control (edge-event and node-event schemes), event detector has to

continuously measure the relative states of neighboring agents among the network

or self-state as mentioned above. However, sampled-data control strategy can be

applied to avoid continuous measurement completely and Zeno-behavior can also be

eliminated automatically. This control scheme is more practical in real applications

but also more challenging technically.

• Cooperative control of multi-agent systems with uncertain interactive in-

formation

This topic has attracted growing attention among the control community recently,

due to its broad applications and increasing demands in many areas. For exam-

ple, autonomous quadrotors work cooperatively in detecting the high voltage line

and the sensors may be interfered by electromagnetic. For this topic, uncertain in-

teractive information (interactive information with noise or random switch sensing

topologies) of each agent is deserved to be studied in cooperative control. There

are still few systematic and theoretical frameworks for cooperative control of MASs

with uncertain interactive information.

33



References

[1] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control.

Springer, 2008.

[2] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent

systems: A brief survey,” Industrial Electronics, IEEE Transactions on, vol. pp,

pp. 1–1, December 2016.

[3] N. Huang, Z. Duan, and G. Chen, “Some necessary and sufficient conditions for con-

sensus of second-order multi-agent systems with sampled position data,” Automatica,

vol. 63, no. 1, pp. 214 – 155, 2016.

[4] J. Qin and H. Gao, “A sufficient condition for convergence of sampled-data consensus

for double-integrator dynamics with nonuniform and time-varying communication

delays,” IEEE Transactions on Automatic Control, vol. 57, no. 9, pp. 2417–2422,

2012.

[5] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered

control for multi-agent systems,” Automatic Control, IEEE Transactions on, vol. 57,

no. 5, pp. 1291 – 1297, 2012.

[6] Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-triggered control of

multi-agent systems with combinational measurements,” Automatica, vol. 49, no. 2,

pp. 671 – 675, 2013.

[7] F. Xiao, X. Meng, and T. Chen, “Average sampled-data consensus driven by edge

events,” in Chinese Control Conference, 2012. 31st IEEE Conference on, pp. 6239 –

6244, IEEE, 2012.

[8] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based broadcasting

for multi-agent average consensus,” Automatica, vol. 49, no. 1, pp. 245–252, 2013.

[9] C. Nowzari and J. Cortés, “Zeno-free, distributed event-triggered communication and

control for multi-agent average consensus,” in American Control Conference (ACC),

2014, pp. 2148–2153, IEEE, 2014.

34



[10] F. Xiao, X. Meng, and T. Chen, “Sampled-data consensus in switching networks of

integrators based on edge events,” International Journal of Control, vol. 88, no. 2,

pp. 391 – 402, 2015.

[11] Y. Fan, L. Liu, G. Feng, and L. Wang, “Self-triggered consensus for multi-agent

systemswith zeno-free triggers,” Automatic Control, IEEE Transactions on, vol. 60,

no. 10, pp. 2779 – 2784, 2015.

[12] Q. Liu, J. Qin, and C. Yu, “Event-based multi-agent cooperative control with quan-

tized relative state measurements,” in Decision and Control, 2016. 55th IEEE Con-

ference on, pp. 2233 – 2239, IEEE, 2016.

[13] B. Wei, F. Xiao, and M.-Z. Dai, “Edge event-triggered control for multi-agent systems

under directed communication topologies,” International Journal of Control, vol. 0,

no. 0, pp. 1–10, 0.

[14] Z. Sun, N. Huang, B. D. O. Anderson, and Z. Duan, “A new distributed zeno-free

event-triggered algorithm for multi-agent consensus,” in Decision and Control, 2016.

55th IEEE Conference on, pp. 3444 – 3449, IEEE, 2016.

[15] R. Carli and S. Zampieri, “Networked clock synchronization based on second or-

der linear consensus algorithms,” in Decision and Control (CDC), 2010 49th IEEE

Conference on, pp. 7259–7264, IEEE, 2010.

[16] G. S. Seyboth and F. Allgower, “Clock synchronization over directed graphs,” in

Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 6105–

6111, IEEE, 2013.

[17] G. Seyboth, “Event-based control for multi-agent systems,” Master’s Degree Project,

Stockholm, Sweden, 2010.

[18] Z. Zeng, X. Wang, and Z. Zheng, “Edge agreement of multi-agent system with quan-

tised measurements via the directed edge laplacian,” Control Theory & Application,

IET, vol. 10, pp. 1583 – 1589, August 2016.

[19] M. Guo, “Quantized cooperative control,” Master’s Degree Project, Stockholm, Swe-

den, 2011.

[20] K. Thulaslraman and M. Swamy, Graphs: Theory and algerithms. Wiley, 2011.

35



[21] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” Au-

tomatic Control, IEEE Transactions on, vol. 52, pp. 1680–1685, September 2007.

36




