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Abstract
Cross-modality pedestrian image matching, which entails the matching of visible and infrared images, is a vital area in person
re-identification (reID) due to its potential to facilitate person retrieval across a spectrum of lighting conditions. Despite its
importance, this task presents considerable challenges stemming from two significant areas: cross-modality discrepancies due
to the different imaging principles of spectrum cameras and within-class variations caused by the diverse viewpoints of large-
scale distributed surveillance cameras.Unfortunately, the existing literature provides limited insights into effectivelymitigating
these issues, signifying a crucial research gap. In response to this, the present paper makes two primary contributions. First,
we conduct a comprehensive study of training methodologies and subsequently present a strong baseline network designed
specifically to address the complexities of the visible-infrared person reID task. This strong baseline network is paramount
to the advancement of the field and to ensure the fair evaluation of algorithmic effectiveness. Second, we propose the Cross-
Modality Contrastive Learning (CMCL) scheme, a novel approach to address the cross-modality discrepancies and enhance
the quality of image embeddings across both modalities. CMCL incorporates intra-modality and inter-modality contrastive
loss components, designed to improve the matching quality across the modalities. Thorough experiments show the superior
performance of the baseline network, and the proposedCMCLcan further bring performance over the baselines, outperforming
the state-of-the-art methods considerably.
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1 Introduction

This article studies the person re-identification (reID) prob-
lem, particularly focusing on a challenging setting: matching
pedestrian images cross daytime and nighttime.

A person reID is a classical application in metric learning,
which aims to learn a latent embedding space via training
data. In such a latent space, the unseen query can be cor-
rectly matched by simply comparing the distance/similarity
to images in the support set. In recent years, the person
reID task has made a significant improvement, and the latest
person reIDmachines can achieve human-level retrieval per-
formance [1, 2]. However, such a reID machine cannot work
successfully in complicated real-life situations. For example,
it is difficult for a system trained by a single modality of visi-
ble images, to extract discriminative features for both visible
and infrared images, leading to amismatch of cross-modality
data.

This newly emerged problem is named visible-infrared
person reID (VI-reID) [3]. Themain challenging comes from
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the large modality discrepancy between visible images and
infrared images. A diverse set of solutions, mainly including
generative-based methods and representation-based meth-
ods, have been investigated to mitigate the modality gap of
two types of images, resulting in learning a common embed-
ding space for cross-modality pedestrian images [4–7]. Yet, it
remains an open problem and requiresmore effort to improve
the retrieval performance in practice.

Meanwhile, along with novel algorithms pushing the
boundaries of state-of-the-art values, an effective baseline
is also a necessary integral part of a reID system for reasons
that a common strong baseline can evaluate the superiority
of algorithms and establish the apple to apple comparison
of algorithms. As illustrated in Fig. 1, we can observe that
the performance of baselines in the state-of-the-art methods
varies; thus comparing with algorithms developed on top of
different baselines is unfair. That said, in some cases, the
improvement is mainly attributed to training tricks, instead
of the algorithm itself. This requires us to develop a strong
baseline for academia. In this paper, we study a set of train-
ing methods in the literature and present a strong baseline for
the VI-reID task. We believe our baseline will promote the
development of the VI-reID community.

In the proposed baseline network, we follow the common
practice of the VI-reID task to use cross-entropy loss and
triplet loss as object functions [4, 8]. The cross-entropy loss
only optimizes the representation of images and ignores the
modality gap [9]. In contrast, the triplet loss usually leverages
the hard mining strategy to mine a hard positive sample and
a hard negative sample for a given anchor sample. It means
that in the triplet loss, a positive pair only contrasts with one
negative pair. However, recent studies in contrastive learn-
ing reveal contrasting to more negative pairs is helpful for
representation learning [10, 11]. This inspires us to develop
a cross-modality contrastive learning (CMCL) scheme for
the task at hand. In the setup of contrastive learning for self-
supervised learning (SSL), a core component is to create a
positive pair by applying different data augmentations to the
same image. Different from the setup in SSL, we leverage
the label information to mine several positive pairs1 with-
out applying various data augmentations to the same image,
which halves the computation cost. Also, in the proposed
CMCL, a positive sample w.r.t. an anchor can either be a
visible image or an infrared image, which simultaneously
decreases the inter-modality variance and intra-variance in
the embedding space.Empirically,wefind that employing the
proposed CMCL is not without difficulties in the proposed
VI-reID baseline and we conduct experiments to explore the
correct setup to make the contrastive loss work in our task.
The contributions of this paper can be summarized as fol-
lows:

1 A mini-batch contains several samples per person identity.

• We first study a set of training methods and verify the
effectiveness of each training method on top of a vanilla
baseline network. Having the training methods at hand,
a strong baseline network can be presented. Our baseline
significantly outperforms existing baselines. For exam-
ple, our baseline performance on the RegDB [12] dataset
is 90.57% / 83.05%, which outperforms the state-of-the-
art method, i.e., CM-NAS [13], by 6.03% / 4.60% w.r.t.
R-1 / mAP.

• We further propose a cross-modality contrastive learn-
ing (CMCL) scheme, in which intra-modality contrastive
loss and inter-modality contrastive loss are developed to
explicitly align the embeddings of two modalities. The
correct setup to make the contrastive learning scheme
work for our task is also studied.

• A thorough battery of experiments performed on two
public datasets, i.e., SYSU-MM01 [3] and RegDB [12],
verify the superiority of our baseline and the proposed
cross-modality contrastive learning scheme.

Code is available for academic use.2

2 Related work

2.1 Person re-identification

An increasingnumber of solutions havebeen studied to report
steady benchmark improvements over time in person reID
and this task aims to create discriminative feature embed-
dings for pedestrian images [1]. In the era of deep learning,
Convolutional Neural Networks (CNNs) have become the
popular tool to establish such embedding spaces via extract-
ing the feature of images [14–16].Alongwith global features,
local features [8, 17], or low-level features [18, 19] are
employed to increase the discriminative power of the embed-
dings. Other auxiliary information, i.e., human poses [20,
21], human attributes [22, 23], and visual attention [24, 25],
also provide cues to distinguish person appearance features.

Apart from the single modality retrieval task, a more dif-
ficult setting, where pedestrians are matched in different
modalities of images, is first proposed in [3]. In this set-
ting, a solution is supposed to align the feature embeddings
for inter-modality images and intra-modality images of the
same person jointly. To achieve so, two popular groups of
solutions are studied.

One group is to learn an embedding space for visible and
infrared images. The work in [3] augments the visible or
infrared images via zero-padding, which enables the net-
work to easily learn domain-specific features. Its extension

2 https://github.com/PengfeiFANGanu/Cross-Model-Re-ID-PCB-
baseline.
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Fig. 1 The comparison of
different baselines on the
SYSU-MM01 dataset. Our
baseline (i.e., VI-PCB) can
considerably boost the
performance over the baselines
in existing state-of-the-art
methods

work [26] further proposes to learn domain-shared features
by constraining a cross-modality similarity preservation loss
to the network. The following works improve the discrimina-
tion of features by extracting modality-shared features [27]
andmodality-invariant features [28].Considering the domain
gap, the works in [29, 30] enable the network to focus on the
informative regions in person images across two modalities.
The X-modality strategy, which bridges the images of two
modalities, can alleviate the domain gap by a learned mid-
dle modality [31]. This idea is also elaborated in [32], where
a new syncretic modality is adaptatively generated to min-
imize the modality gap by aligning the distributions of two
modalities. The domain gap can also be eliminated either
by leveraging the attention mechanism to match the visual-
similar features between different modalities [4, 33], or by
searching an optimal neural architecture for both modalities
of data [13].

Another group of solutions leverages the superiority of
generative models, which reduce the modality discrepancy
at the pixel level of images. In [34], the AlignGAN translates
visible images to infrared images and aligns the images at
pixel level and feature level jointly. A similar idea is pro-
posed in [35], where a generative model generates a unified
latent space for images and therefore a feature extractor is
trained to encode images in a common embedding space. The
person image is also paired in both light conditions using a
generative model, hence the network can focus on learning
appearance features of images [36]. In contrast to [36], the
work in [37] disentangles person images and only keeps the
person-discriminative factors for the retrieval task.

Alongside the diverse set of seminal algorithms for theVI-
reID task, an effective baseline network is also a necessary
integral part of the community. In the single modality person
reID task, Luo et al investigated a number of trainingmethods
in the baseline network, and found a useful training method,
i.e., batch normalization neck, to jointly optimize the triplet
loss and classification loss [2, 38]. Our work follows the
works [2, 38] to develop our strong baseline for the VI-reID
task. The closest study to our work is the work in [39], where
the baseline network is developed via modifying the triplet
loss, whereas our work systematically studies the training
methods in the field and presents a better baseline.

2.2 Contrastive learning

Minimizing the objective function via contrastive scheme
has shown its power in self-supervised learning (SSL) [10,
11, 40–42]. The contrastive scheme in SSL can be derived
from the infoNEC loss [43], which is to maximize the
mutual information (MI) between global and local repre-
sentations of images. Similarly, contrastive learning aims to
learn consistent image representations under different data
augmentations and the work in [44] proves that reducing
the MI between views of an image leads to an increasing in
the representation power. Along with the data augmentation
techniques, Chen et al first proposed an effective frame-
work for SSL via contrastive scheme [10]. To alleviate the
large batch size in [10], MoCo introduces a momentum-
updated encoder, which utilizes the data in previous batches.
The work in [40] further extends the SSL framework to
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Siamese networks. Under the SSL framework, more effec-
tive algorithms are further proposed to push the boundaries
of state-of-the-art performance [41, 42, 44–46].

In the cross-modality analysis, contrastive loss also
becomes an option to match cross-modal data [47–50]. For
example, the works in [47–49] establish correspondences
between the text and image [48]. In [50], abnormality anal-
ysis is achieved by contrasting image features and radiomic
features. Different from existingworks, our proposal exploits
the full potential of cross-modality contrastive learning,
which takes into account the intra-modality similarities and
inter-modality similarities in the loss, and is the very first
time to address the VI-reID task.

3 A strong baseline

3.1 Problem formulation

Let a third-order tensor, V i ∈ R
C×H×W or I i ∈ R

C×H×W ,
denote the i-th visible image or infrared image of a person,
in which C , H and W are the number of channels, height
and width, respectively. Each image is associated to a person
identity yi . The goal of VI-reID learning is to regress a non-
linear function Fθ : X → R

n to embed visible images or
infrared images to a possible common feature space. To be
specific, the training set consists of both visible image set and
infrared image set, represented as X trn = [V trn | I trn], with
each set given by V trn = {V i , yi }NV

i=1 and I trn = {I i , yi }NI
i=1.

The VI-reID task formulates the training as:

θ∗ = argmin
θ

∑

V∈V trn,I∈I trn

L(
Fθ (V ), Fθ (I)

)
, (1)

where L indicates the training objective. In the remainder of
this section, we first describe the vanilla baseline network
and then systematically study the training methods on the
baseline.

3.2 AVanilla baseline network

Figure 2a illustrates the architecture of the vanilla baseline
network. We employ a ResNet-50 [51], pretrained on Ima-
geNet [52], as the backbone network. Training a VI-reID
machine includes the following steps.

Batch samplingAmini-batch containsM visible images and
M infrared images, denoted by B = [ {V k}Mk=1 | {Ik}Mk=1 ].
In each modality, we randomly sample NP person identities
and NK samples per identity, satisfying that M = NP ×NK .
Hence the size of a mini-batch is 2 × M . In this paper, we
set NP = 8 and NK = 4.

Data augmentations In this vanilla baseline network,
various data augmentation techniques are used, such as
zero-padding,random crop,random horizontal
flip and normalize.

Loss functions The network is optimized via multi-task
learning (MTL) scheme. As the name suggests, MTL for-
mulates the overall learning procedure as a combination of
several sub-tasks; each having its own importance in the
overall learning mechanism. In this work, we train our net-
work for the tasks of ranking and classification. Specifically,
a network first encodes images to a batch of features, i.e.,
B = [ {vk}Mk=1 | {ik}Mk=1 ]. For simplicity, we denote
the batch of features as B = [ {bi }2Mi=1 ]. For all possible
triplet [bi , b+, b−], with bi , b+ and b− presenting an anchor
sample, a positive sample and a negative sample, the cross-
modality triplet loss function is given by:

Ltri = 1

2M

2M∑

i=1

[
d(bi , b+) − d(bi , b−) + ξ

]
+, (2)

where ξ is the margin and we set ξ = 0.3 throughout the
paper. The triplet loss aims to learn an embedding space
that increases the between-class variance by optimizing the
relative similarity information in a triplet. Following the
good practice in [38], we use a batch normalization
neck (BNN) on B to obtain new features B̂ = [{b̂i }2Mi=1] =
BN(B), where BN is a batch normalization layer, defined
as BN(·) : R

m → R
m,BN(x) := γ x−E[x]√

Var[x] + β. Then
a fully connected layer W is used to produce logits, as
p = softmax(W� b̂i ). The cross-entropy loss is to maxi-
mize the log likelihood of b̂i w.r.t. its identity c, as follows:

Lce = − 1

2M

2M∑

i=1

log
(
p(yi = c | b̂i )

)
. (3)

This classification task encodes the class-specific infor-
mation, which minimizes the within-class variance.

Optimization SGD optimizer is adopted to optimize the net-
work. The learning rate is initialized to 0.01. The learning
rate is decayed by a factor of 0.1 at the 20-th, 50-th epoch
respectively for all the datasets. The network is trained for 80
epochs in total. The values of weight decay and momentum
are set to 0.0005 and 0.9, respectively. Given a batch of data,
one first need to calculate the gradient of the loss function L
w.r.t θ i in the i-th iteration. Then the update role of SGD is
given by θ i+1 = θ i − η�θ iL.

Inference In the inference stage, the features B̂ is employed
to evaluate the model’s performance.
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Fig. 2 The network architectures of the vanilla baseline and strong baseline

3.3 Trainingmethods

On top of the vanilla baseline, we further introduce some
training methods, which are the essential components of our
strongbaseline network (seeFig. 2b). Those trainingmethods
have appeared in published papers and open-source codes.
We aim to systematically evaluate the effectiveness of such
methods in VI-reID task. Noted that most of the training
methods can be seamlessly employed in the vanilla baseline.

Modality Learning To learn modality-specific features of
visible and infrared images, we follow the work in [4] to
incorporate the modality learningmodule in the net-
work. This is achieved by using two convolutional blocks
with different parameters to capture the modalities features
(see gv and gi in Fig. 2b). Then another convolutional block
with share parameters is used to encode a common fea-
ture space for two modalities (see f in Fig. 2b). In our
implementation, we set gi = conv1, gv = conv1, and
f = conv2_x − conv5_x in the ResNet-50.

Warmup learning rate The learning rate is an important
hyper-parameter, which decides the step size of updating
parameters. We employ the warmup strategy to slowly
increase the value of the learning rate at the beginning of the
training stage. This can help the network to adapt to the train-
ing data and avoids over-fitting of the network in the early
stages of training. In practice, we use the linear warmup
scheme [38] as follows:

lr(epoch) =

⎧
⎪⎪⎨

⎪⎪⎩

0.1 × epoch
10 , epoch ≤ 10

0.1, 10 < epoch ≤ 20
0.01, 20 < epoch ≤ 50
0.001, 50 < epoch ≤ 80.

(4)

Random erasing To improve the generalization of a reID
machine, we adopt the random erasing [53] data aug-
mentation to train the neural network as shown in Fig. 3a
and b. In the training stage, the random erasing first
produces a rectangle region with various sizes. Then this

rectangle region randomly attends to images and replaces
the pixel values with random values. Such a process of data
augmentation can reduce the risk of over-fitting, thereby
improving the generalization of the network. In the imple-
mentation, we use the default values of hyper-parameters for
random erasing as in [53].

Color Jitter In the VI-reID task, different imaging pro-
cesses of spectrum cameras [54] lead to the changes of color
between visible images and infrared images, whereas the tex-
ture information of images is preserved. That said, the color
of images significantly affects appearance features encoded
by the network. To mitigate this issue, we use the color
jitter to augment the data, as illustrated in Fig. 3a and c.
The color jitter can randomly change the brightness,
contrast, and saturation of images. In our baseline, all values
of hyper-parameters are set to 0.5.

Part feature learningMany studies in the person reID field
have shown that part-features of person images can enhance
the matching performance of the system [8, 17, 55]. We
also equip our network with the ability of part-based learn-
ing. We follow the seminal work, e.g., PCB [17], to develop
the part feature learning model. To this end, the
backbone network encodes an image to a 3-D feature map,
T ∈ R

c×h×w. We horizontal partition the feature map into t
parts. Then each part T i is summarized using global average
pooling into a part feature gi . The part feature gi is opti-
mized by triplet loss and cross-entropy loss. In our baseline
network, we set t = 4.

Noted the ablation studyon thevanilla baseline (i.e., image
size or batch size) and strong baseline (i.e., number of part
features t) is reported in the supplementary material.

4 Cross-modality contrastive loss

In this section, we propose to enable the use of con-
trastive loss in the cross-modality matching problem as
shown in Fig. 4. To align features of both intra-modality
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Fig. 3 Samples for raw images, and augmented images by random
erasing and color jitter in RegDB dataset. Faces are covered
using black boxes for privacy purposes. Best viewed in color

Fig. 4 Intra-modality and inter-modality contrastive loss in the cross-
modality contrastive learning scheme

and inter-modality in the embedding space, we propose two
modifications of the contrastive loss,3 i.e., intra-modality
contrastive loss and inter-modality contrastive loss.

Consider a batch of vector representations for visible
images and infrared images, B̂ = [ {v̂k}Mk=1 | {îk}Mk=1 ],
we use a projection head h4 to project the vector repre-
sentations to the space where contrastive loss is applied as
B̃ = h(B̂), B̃ = [ {ṽk}Mk=1 | {ĩk}Mk=1 ]. Let I = {1...M}
be the index of samples in a single modality. In the pres-
ence of label information and the sampling strategy (e.g., Nk

samples per person identity) in our task, each anchor sam-
ple contains at least one positive sample in a mini-batch. In
other words, positive pairs for any samples can be guaranteed

3 For simplicity, we formulate the contrastive loss without considering
the part model. While, the usage of contrastive loss in the part model is
identical.
4 In our work, the projection head is a 2-layer MLP with ReLU activa-
tion (i.e., 2048 → 2048 → ReLU → 128) as the common practice in
[10].

without using data augmentations in the popular contrastive
learning pipeline. We describe the intra-modality contrastive
loss and inter-modality contrastive loss below.

4.1 Intra-modality contrastive loss

The intra-modality contrastive loss aims to maximize the
mutual information between the anchor sample and its posi-
tive sample in a single modality, thereby aligning the feature
embeddings for the same class. Given a batch of feature vec-
tors for visible images, i.e., Ṽ = {ṽk}Mk=1, P(k) indicates the
index set for positive samples w.r.t. the anchor (i.e., ṽk) in
Ṽ , and S(k) = I\{k}. The intra-modality contrastive loss for
visible images is formulated by:

Lintra
V =

M∑

k=1

−1

|P(k)|
∑

p∈P(k)

log
exp

(
sim(ṽk , ṽ p)/τ

)
∑

s∈S(k) exp
(
sim(ṽk , ṽs)/τ

) ,

(5)

where τ is the temperature and sim(·, ·) : R
m × R

m →
R, sim(xi , x j ) := x�

i x j
‖xi‖‖x j‖ is cosine similarity. Throughout

the paper, we empirically set τ = 0.1. The intra-modality
contrastive loss for infrared images (i.e., Lintra

I ) can be
obtained in a similar way.

4.2 Inter-modality contrastive loss

The inter-modality contrastive loss receives the feature vec-
tors of two modalities as input and aims to project visible
images and infrared images into a common embedding
space. Having both the visible image embeddings (i.e., Ṽ =
{ṽk}Mk=1) and infrared image embeddings (i.e., Ĩ = {ĩk}Mk=1)
as input, the inter-modality contrastive loss from visible
images to infrared images is defined as:

Linter
V→I =

M∑

k=1

−1

|P ′(k)|
∑

p∈P ′(k)
log

exp
(
sim(ṽk , ĩ p)/τ

)
∑

s∈I exp
(
sim(ṽk , ĩ s)/τ

) ,

(6)
where P ′(k) indicates the index set for positive samples w.r.t.
the anchor (e.g., ṽk) in another modality of data (e.g., Ĩ).
Noted that the inter-modality contrastive loss from infrared
images to visible images (e.g.,Linter

I→V ) can also be defined. In
both intra-modality contrastive loss and inter-modality con-
trastive loss, one can find that the optimization of the two
contrastive loss indeed can create an embedding space that
accommodates two modality of data jointly.

Hence, the total cross-modality contrastive loss can be for-
mally formulated as:Lcts = λ1Lintra

V +λ2Lintra
I +λ3Linter

V→I +
λ4Linter

I→V . Having the cross-modality contrastive loss at hand,
we can give the final training loss:

L = Lce + Ltri + βLcts. (7)

In this paper, we set λ1, λ2, λ3, λ4 and β to 1.0.
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Table 1 Evaluation of different
training components on
SYSU-MM01 and RegDB
datasets

Training methods SYSU-MM01 RegDB
R-1 mAP R-1 mAP

Vanilla baseline 38.44 38.21 41.67 39.77

+ modality learning 42.93 42.06 48.41 46.47

+ warmup 51.11 50.01 73.44 67.31

+ random erasing 61.76 59.02 79.30 72.53

+ color jitter 60.35 57.68 84.82 75.60

+ part feature learning (t = 4) 66.71 64.71 90.57 83.05

Bold values indicate the best result

5 Experiment

5.1 Datasets and evaluation protocol

SYSU-MM01 [3] is a largeVI-reIDdataset, collected by four
RGBcameras and twonear-infrared cameras. The training set
of SYSU-MM01 contains 22, 258 visible images and 11, 909
infrared images of 395 identities in total. In the testing set,
the query set has 3, 803 infrared images of 96 identities, and
the gallery set has 301 visible images of the same identities
as the query set. Specifically, RGB camera 1 and camera 2
are located in two bright indoor rooms. Infrared camera 3 and
camera 6 are placed in a dark environment. Cameras 4 and 5
are two RGB surveillance cameras to capture pedestrians in
outdoor scenes. In evaluation, we report results on both All
Search and Indoor Search modes. In All Search mode, the
gallery set contains all visible images captured by four RGB
cameras, while in Indoor Search mode, the gallery set only
contains the images captured by two indoor cameras.

RegDB [12] is another popular dataset for VI-reID task. This
dataset uses a paired camera system (one RGB camera and
one far-infrared camera) to captures 412 person, with each
having 10 visible images and 10 infrared images. Two cam-
eras are rigidly attached closely together on a panel such
that two modalities of images can be collected without any
differences in capturing time. Then, the dual camera sys-
tem is placed on top of the building, simulating the normal
working condition of the surveillance system. That said, the
RGB images and the far-infrared images are captured simul-
taneously. Following the standard protocol, 206 identities are
randomly selected as training set and the remaining 206 iden-
tities are used as testing set in a trial. All results are reported
over 10 trials of random split to the dataset. In evaluation,
both Visible to Infrared and Infrared to Visible modes are
adopted to evaluate our model.

Following the common practice of person reID, we evalu-
ate our model using rank-k values in cumulative matching
characteristic (CMC) curve and mean average precision
(mAP) metric.

We implement our method in the PyTorch [56] deep learn-
ing package and all experiments are performed on NVIDIA

TeslaV100GPUs. In Sects. 5.2, and 5.3, we use “All Search”
mode for SYSU-MM01 dataset and “Visible to Infrared”
mode for RegDB dataset for the study.

5.2 Trainingmethods on baseline networks

We first conduct a thorough battery of experiments to
systematically evaluate the effectiveness of each training
component as shown in Table 1. The vanilla baseline network
achieves 38.44%/38.21% and 41.67%/39.77% for Rank-
1/mAP accuracies on t SYSU-MM01 dataset and RegDB
dataset respectively, which is on par with most of baselines
in recent works [31, 33, 57]. We further employ the train-
ing methods along with the vanilla baseline network. We can
observe that such training methods are essential for train-
ing a generalizable visible-infrared image retrieval machine.
Noted that the color jitter augmentation can improve
the performance on the RegDB dataset, i.e., 5.84% for Rank-
1 and 3.07% formAP.However, it will lower the performance
of the network on the SYSU-MM01 dataset. The main con-
jecture is that the SYSU-MM01 dataset is much larger than
RegDB dataset, and the network can learn enough color-
invariant information in the SYSU-MM01 dataset. As for
the RegDB dataset, the network is easily over-fitting to the
training data, and color jitter can effectively augment
the training data, thereby improving the generalization of the
network. We also report the ablation of the baseline network
in the supplementary material.

5.3 Experiments on cross-modality contrastive
learning

In this part, we continue to evaluate the superiority of the
contrastive loss in VI-reID task. This study is conducted on
VI-ResNet-50 and VI-PCB baselines.

5.3.1 Impact of contrastive loss

We first study the effect of contrastive loss in the VI-reID
task. It is shown in Table 2 that each of the intra-modality
contrastive loss (i.e., Lintra) and inter-modality contrastive
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Table 2 Evaluation of the proposed cross-modality contrastive learning
on SYSU-MM01 and RegDB datasets

Contrastive Loss SYSU-MM01 RegDB
R-1 mAP R-1 mAP

VI-ResNet-50 61.76 59.02 84.82 75.60

Lintra 62.94 60.17 66.38 78.21

Linter 63.52 60.34 86.08 78.79

Lintra & Linter 64.88 61.76 88.44 81.62

VI-PCB 66.71 64.71 90.57 83.05

Lintra 67.94 65.11 91.63 84.20

Linter 68.27 65.27 91.82 84.07

Lintra & Linter 69.97 67.42 93.40 86.77

Bold values indicate the best result

Table 3 Evaluation of different losses on SYSU-MM01 dataset

Loss R-1 mAP

(i) Lce 48.52 45.27

(ii) Lce + Ltri 61.76 59.02

(iii) Lce + Lstri 58.72 56.81

(iv) Lce + Lcts 55.81 54.70

(v) Lce + Ltri + Lstri 62.68 59.68

(vi) Lce + Ltri + Lcts 64.88 61.76

Bold values indicate the best result
Lce, Ltri, Lstri and Lcts indicate cross-entropy loss, triplet loss with
hard mining, triplet loss with semi-hard mining and the proposed cross-
modality contrastive loss, respectively

loss (i.e., Linter) can improve the retrieval performance over
baseline networks. We also find that combining both con-
trastive losses can further bring performance gain, indicating
that two modifications of contrastive loss learn complemen-
tary information in the dataset.

Both triplet loss and contrastive loss are popular options
for representation learning. We use both loss functions to
optimize our network. To verify and compare the effective-
ness of the two schools of losses, we include another study.
We also include a loss, triplet loss with a semi-hard min-
ing strategy (denoted by Lstri) [8], to justify our assumption
that optimizing non-hard samples benefits the network train-
ing. Table 3 suggests that optimizing hard samples by triplet
loss is much more important than non-hard samples by con-
trastive loss for learning a good representation (see (ii), (iii)
and (iv)). Beyond optimizing hard samples by triplet loss,
such non-hard samples can also provide useful information
for the optimization process of a network. That said, the usage
of contrastive loss in our work is non-trivial and the network
indeed benefits from the combination of triplet loss and con-
trastive loss.

The hetero-center loss [9, 32] is also a popular loss in
the VI-reID. We further study the hetero-center loss on
two baselines, and the empirical results are reported in

Table 4 Comparison of the effectiveness of the proposed cross-
modality contrastive loss Lcts and the hetero-center loss Lhc

Loss SYSU-MM01 RegDB
R-1 mAP R-1 mAP

VI-ResNet-50 61.76 59.02 84.82 75.60

Lhc 63.42 60.70 86.47 78.66

Lcts 64.88 61.76 88.44 81.62

VI-PCB 66.71 64.71 90.57 83.05

Lhc 67.96 65.21 91.82 84.30

Lcts 69.97 67.42 93.40 86.77

Bold values indicate the best result

Table 5 Evaluation of different projection heads on SYSU-MM01 and
RegDB datasets

Projection Head (h) SYSU-MM01 RegDB
R-1 mAP R-1 mAP

VI-ResNet-50 61.76 59.02 84.82 75.60

identity head 56.62 55.78 84.62 73.20

linear head 61.98 59.90 86.12 77.69

non-linear head 64.88 61.76 88.44 81.62

VI-PCB 66.71 64.71 90.57 83.05

identity head 62.07 60.29 88.61 80.20

linear head 67.11 64.89 90.82 83.82

non-linear head 69.97 67.42 93.40 86.77

Bold values indicate the best result

Table 4. It shows the hetero-center loss (i.e.,Lhc) can improve
the performance of both baselines. While the proposed
cross-modality contrastive loss (i.e., Lcts) attains superior
performance than the hetero-center loss. Along with the
empirical evaluation, we further conduct a t-test to demon-
strate the statistical significance of the improvement, and
obtain the p-value of 0.0026, meaning that our results are
statistically significant (p < 0.05 is significant). Thus, we
believe that our the proposed contrastive loss is superior to
the hetero-center loss.

5.3.2 Impact of projection head

Thework in [10] suggests that the projection head is an essen-
tial component for contrastive learning, in the sense that the
projection head canmaintainmore information about the data
information (i.e., color, pose of objects etc). Thus we eval-
uate three architectures of projection head in Table 5. The
identity head indicates an identity mapping. Table 5
reveals that in both baseline networks, the non-linear
head is better than the linear head and the identity
head counterparts, and a similar observation is also made
in [10]. We can also observe that using the contrastive
loss without projection head (i.e., identity head) even
degrades the performance over baseline networks. A possible
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Table 6 Evaluation of different temperatures on SYSU-MM01 and
RegDB datasets

Temperature (τ ) SYSU-MM01 RegDB
R-1 mAP R-1 mAP

VI-ResNet-50 61.76 59.02 84.82 75.60

τ = 0.05 62.50 60.23 85.91 77.73

τ = 0.1 64.88 61.76 88.44 81.62

τ = 0.5 53.85 52.92 83.69 73.69

τ = 1.0 56.71 53.70 82.76 72.62

VI-PCB 66.71 64.71 90.57 83.05

τ = 0.05 67.18 65.08 91.54 83.97

τ = 0.1 69.97 67.42 93.40 86.77

τ = 0.5 59.43 60.20 87.62 79.93

τ = 1.0 63.37 60.92 85.44 76.59

Bold values indicate the best result

conjecture of this situation is that the loss value of contrastive
loss is large, which affects the optimization direction of the
network; thereby affecting the discrimination of features.

5.3.3 Impact of temperature

Temperature (i.e., τ ) is another important hyper-parameter
that affects the loss value of contrastive loss. The results and
comparisons shown in Table 6 reveal that: (1) A small value
of temperature (i.e., 0.05 and 0.1) in contrastive loss can bring
performance gain over the baseline network. (2) In contrast,
the performance of the network will be degraded when the

temperature value in contrastive loss is large (i.e., 0.5 and
1.0).

5.3.4 Qualitative results

We illustrate some qualitative results in Fig. 5, to verify
the superiority of the proposed CMCL on the SYSU-MM01
dataset. It is observed that our method can improve the hit
positions in the ranking list and retrieve more images cor-
rectly as compared to its baseline, which indicates the supe-
rior property of the proposed contrastive learning scheme.

To further justify the effectiveness, we produce some
visualizations of the feature maps on the baseline, baseline
+Lintra and baseline +Lintra + Linter, as shown in Fig. 6.
Images are sampled from the SYSU-MM01 dataset. Fig-
ure 6a and b indicate the samples from ID7 and ID53,
respectively. In each person, from left to right, (1) the input
person image, (2) the feature map of baseline, (3) the feature
map of baseline +Lintra and (4) the feature map of baseline
+Lintra + Linter. It shows that the proposed cross-modality
contrastive loss can help the network to focus on the dis-
criminative and common areas of two modalities of images,
resulting in performance gain over the baseline.

We provide the similarity distribution of the positive and
negative pairs, as shown in Fig. 7. Figure 7a–d show the
distance distributions generating from (a): initial features,
(b): baseline, (c): baseline+Lintra and (d) baseline+Lintra +
Linter, respectively. This study justifies the effectiveness of
each proposed loss component. Specifically, Fig. 7a and b

Fig. 5 The ranking lists
obtained from baseline network
and our method. The correct and
false hits are enclosed in green
and red boxes. Faces are covered
using black boxes for privacy
purposes. Best viewed in color
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Fig. 6 Visualization of the visible images and infrared images using
Grad-CAM. The images are sampled from SYSU-MM01 dataset. In
each person, from left to right, (1) the input person image, (2) the fea-

ture map of baseline, (3) the feature map of baseline+Lintra and (4) the
feature map of baseline +Lintra + Linter . In the heat map, the response
increases from blue to red. Best viewed in color

Table 7 Comparison with the
state-of-the-art algorithms on
SYSU-MM01 dataset

Models All search Indoor search
R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

♣ D2RL [35] 28.9 70.6 82.4 29.2 – – – –
♣ HI-CMD [37] 34.94 77.58 – 35.94 – – – –
♣ AlignGAN [34] 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3
♣ JSIA-ReID [36] 38.1 80.7 89.9 36.9 43.8 86.2 94.2 52.9
♣ DG-VAE [58] 59.5 93.8 – 58.5 – – – –
♠ SSFT [27] 47.7 – – 54.1 – – – –
♠ X-modality [31] 49.92 89.79 95.96 50.73 – – – –
♠ DDAG [4] 54.75 90.39 95.81 53.02 61.02 94.06 98.41 67.98
♠ CMAlign [59] 55.41 – – 54.14 58.46 – – 66.33
♠ NFS [6] 56.91 91.34 96.52 55.45 62.79 96.53 99.07 69.79
♠ CoAL [33] 57.2 92.3 97.6 57.2 63.9 95.4 98.9 70.8
♠ CICL+IAMA [54] 57.2 94.3 98.4 59.3 66.6 98.8 99.7 74.7
♠ VSD [5] 60.01 94.18 98.14 58.80 66.05 96.59 99.38 72.98
♠ CM-NAS [13] 61.99 92.87 97.25 60.02 67.01 97.02 99.32 72.95
♠ MCLNet [7] 65.40 93.33 97.14 61.98 72.56 96.98 99.20 76.58
♠ SMCL [32] 67.39 92.87 96.76 61.78 68.84 96.55 98.77 75.56

VI-ResNet-50 61.76 91.28 96.07 59.02 66.01 95.46 98.77 71.68

+ CMCL (Ours) 64.88 93.67 97.12 61.76 71.63 97.82 99.12 76.49

VI-PCB 66.71 94.37 98.01 64.71 72.73 97.93 99.59 77.63

+ CMCL (Ours) 69.97 95.26 98.27 67.42 76.48 97.92 99.68 79.94

Bold values indicate the best result
The symbols ♣ and ♠ indicate the generative-based algorithms and representation-based algorithms, respec-
tively
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Fig. 7 The distributions of the four types of distances between the
cross-modality features. The distance distribution of positive and neg-
ative pairs are indicated by red and blue color, respectively. From (a)

to (b), the distance distributions are generate from (a): initial features,
(b): baseline, (c): baseline +Lintra and (d) baseline +Litra +Linter . δ is
distance of the median value of two distributions

show that the baseline network can significantly improve the
gap between positive and negative pairs. Moreover, theLintra

brings performance gain over the baseline (Fig. 7b vs. c) and
the Linter can further improve the performance (Fig. 7c vs.
d).

5.4 Comparison with state-of-the-art algorithms

To evaluate the superiority of the proposed baseline net-
work and cross-modality contrastive learning scheme, we
continue to compare our results with current state-of-the-art
algorithms, shown in Tables 7 and 8.

5.4.1 Evaluation on SYSU-MM01 dataset

We first evaluate our model on both “All Search” and
“Indoor Search”modes for the SYSU-MM01dataset. Table 7
shows our method significant outperforms the current state-
of-the-art. As observed, “VI-PCB + CMCL” improves the
Rank-1/mAP over SMCL [32] by 2.58% / 5.64% on the “All
Search” mode, and 7.64% / 4.38% on the “Indoor Search”
mode. As compared to another state-of-the-art method, i.e.,
MCLNet [7], the improvement reads as 4.57% / 5.44% on
the a“All Search” mode and 3.92% / 3.36% on the “Indoor
Search” mode, w.r.t. Rank-1 / mAP values, vividly showing
the superiority of our method.
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Table 8 Comparison with the
state-of-the-art algorithms on
RegDB dataset

Models Visible to Infrared Infrared to Visible
R-1 R-10 R-20 mAP R-1 R-10 R-20 mAP

♣ D2RL [35] 43.4 66.1 76.3 44.1 – – – –
♣ AlignGAN [34] 57.9 – – 53.6 56.3 – – 53.4
♣ JSIA-ReID [36] 48.5 – – 49.3 48.1 – – 48.9
♣ HI-CMD [37] 70.93 86.39 – 66.04 – – – –
♣ DG-VAE [58] 73.0 86.9 – 71.8 – – – –
♠ SSFT [27] 65.4 – – 65.6 63.8 – – 64.2
♠ X-modality [31] 62.21 83.13 91.72 60.18 – – – –
♠ DDAG [4] 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
♠ VSD [5] 73.2 – – 71.6 71.8 – – 70.1
♠ CMAlign [59] 74.17 – – 67.64 72.43 – – 65.46
♠ CICL+IAMA [54] 78.8 – – 69.4 77.9 – – 69.4
♠ CoAL [33] 74.1 90.2 94.5 70.0 – – – –
♠ MCLNet [7] 80.31 92.70 96.03 73.07 75.93 90.93 94.59 69.49
♠ NFS [6] 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79
♠ SMCL [32] 83.93 – – 79.83 83.05 – – 78.57
♠ CM-NAS [13] 84.54 95.18 97.85 80.32 82.57 94.51 97.37 78.31

VI-ResNet-50 84.82 95.53 97.63 75.60 84.69 95.60 97.79 75.73

+ CMCL (Ours) 88.44 97.62 98.56 81.62 88.62 97.51 98.60 81.74

VI-PCB 90.57 97.47 98.61 83.05 90.32 97.27 98.60 82.95

+ CMCL (Ours) 93.40 97.63 98.90 86.77 94.16 97.70 98.69 86.69

Bold values indicate the best result
The symbols ♣ and ♠ indicate the generative-based algorithms and representation-based algorithms, respec-
tively

5.4.2 Evaluation on RegDB dataset

We further evaluate our proposed method against the state-
of-the-art algorithms on both “Visible to Infrared” and
“Infrared to Visible” modes for the RegDB dataset. Like
before, our method outperforms the state-of-the-art method,
i.e., CM-NAS [13] by a tangible margin. Particularly, “VI-
ResNet-50 + CMCL” outperforms CM-NAS Rank-1/mAP
by 3.90%/1.30% on the “Visible to Infrared” mode, and
6.05%/3.43% on the “Infrared to Visible” mode. Equipped
with part feature learning, the performance gain
of Rank-1 / mAP value is 8.86%/6.45% on the “Visible to
Infrared” mode, and 11.59%/8.38% on the “Infrared to Vis-
ible” mode, respectively. This huge performance gain again
shows the effectiveness of the proposed method.

6 Conclusion

In this paper, we first contribute a strong baseline network for
the visible-infrared person re-identification task, by means
of extensively studying various training methods in pieces
of literature. Our strong baseline (i.e., VI-PCB) is able to

reach 90.57% Rank-1 accuracy and 83.05% mAP accu-
racy on RegDB dataset. Inspired by the successful practice
of contrastive learning in self-supervised learning, we fur-
ther propose a novel but simple cross-modality contrastive
learning scheme, which explicitly aligns the embeddings
for visible images and infrared images. We conduct thor-
ough experiments to verify the superior performance of the
proposed loss function, which improves the state-of-the-art
results by a considerable margin. In the future, we will study
more effective ways, including the memory mechanism [60],
to improve the retrieval performance and build a large scale
dataset, containing more complicated factors, for VI-reID
task.
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