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Abstract The artificial intelligence (AI) community has recently made tremendous progress in developing self-supervised

learning (SSL) algorithms that can learn high-quality data representations from massive amounts of unlabeled data. These

methods brought great results even to the fields outside of AI. Due to the joint efforts of researchers in various areas, new

SSL methods come out daily. However, such a sheer number of publications make it difficult for beginners to see clearly

how the subject progresses. This survey bridges this gap by carefully selecting a small portion of papers that we believe

are milestones or essential work. We see these researches as the “dots” of SSL and connect them through how they evolve.

Hopefully, by viewing the connections of these dots, readers will have a high-level picture of the development of SSL across

multiple disciplines including natural language processing, computer vision, graph learning, audio processing, and protein

learning.
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1 Introduction

“You can’t connect the dots looking for-

ward; you can only connect them looking

backwards. So you have to trust that the

dots will somehow connect in your future.”

— Steve Jobs 1○.

In the last few years, the artificial intelligence (AI)

community has witnessed a boom in self-supervised

learning (SSL), a class of algorithms that can learn

meaningful representations 2○ without manually labeled

data. These methods have significantly improved the

performance of a variety of AI-related tasks [1–3]. Re-

search fields like natural language processing (NLP) [4],

computer vision (CV) [5, 6], and speech recognition [7]

have all witnessed breakthroughs through the use of

self-supervised methods. With the rapid growth of

computational power, modern neural architectures en-

dowed with self-supervised algorithms can even improve

supervised models trained with over a million labeled

data [6].

Having its advantages in representation learning,

SSL has become a popular research topic. Recently,

thousands of papers [1, 2] have been published each year,

and such a massive number of publications make it dif-

ficult for researchers, especially newcomers, to find out

genuinely inspiring articles and gain an overall picture

of how SSL evolves.

In addition to many related publications, the in-

triguing property of SSL allows it to raise interdisci-

plinary. That said, innovations of SSL can appear in

any of the application fields because of its wide us-
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age. Researchers these days often get ideas from related

fields. For example, both context predictions [8] and

wav2vec [9] were inspired by the famous Word2Vec [10]

algorithm. Similarly, Mockingjay [11] and MAE [6] are

the audio and visual version of BERT [4], respec-

tively. Therefore, interdisciplinary integration requires

researchers to keep track of papers across all related

research fields.

Usually, surveys are good resources for beginners

to learn a particular field quickly and comprehensively.

However, due to the tendency to include more papers,

these surveys themselves are becoming lengthy and dif-

ficult to digest. Actually, when these surveys list their

main contributions, “comprehensive” and “detailed”

are often keywords [2, 12]. In addition, because new pa-

pers come out daily, some methods listed in these sur-

veys will quickly become outdated and lack reference

significance. In order to make our survey easy to un-

derstand, we select a handful of milestone papers and

important work from each field. We call these papers

“dots”, and connect them instead of listing or catego-

rizing them. By connecting these dots, we clarify how

SSL evolves and how different research fields inspire one

another.

Our criterion for selecting these dots is that they

must be the top-cited papers in the fields. We first

determine the famous work for the feature engineer-

ing for each field. We restrain ourselves from select-

ing those papers published after 2013, because deep

learning, the activator of representation learning, gets

popular since 2013. Before then, training deep neural

networks (DNNs) with graphics processing unit (GPU)

was not trendy and researchers spent many of their ef-

forts reducing computational complexity. Hence they

paid less attention to the SSL algorithm itself. Table 1

gives an overview of the work presented in this survey.

In this brief survey, we review and connect the work

from NLP, CV, graph learning, audio processing, and

protein learning. By looking at the links of these SSL

methods from different fields, we can see the follow-

ings. 1) Supervised learning contributes significantly to

the development of SSL. Major neural network archi-

tectures like residual networks and transformers result-

ing supervised learning research are essential to SSL. 2)

SSL methods in NLP like Word2Vec [10] and BERT [4]

inspired most SSL methods in other fields. 3) The gains

in hardware are the main driving force of SSL methods

as they are computationally demanding.

We structure the rest of this paper as follows. From

Section 2 to Section 6, we present the recent advances

of SSL in NLP, CV, graph learning, audio processing,

and protein learning, respectively. In Section 7 and

Section 8, we discuss the existing survey articles and

the future trends of SSL. We conclude our article in

Section 9.

2 Self-Supervised Learning in Natural

Language Processing

The language data, i.e., text, is a typical sequence

of word-tokens, and is easily accessible through the In-

ternet. However, annotating the label for text is very

expensive. For example, on Google AI Platform, as-

signing a class label for a piece of text with 50 words is

about 4x as expensive as classifying an image 3○. This

motivates researchers to invent effective SSL methods

to learn language representations without using text la-

bels. Its progress diagram is shown in Fig.1.

After a few decades of research efforts, several key

ingredients for SSL are identified. Some of the very

important factors are global modeling and large size in

terms of both network and data. However, all of these

factors demand large computation resources. In this

section, we will learn how researchers in the field, con-

strained by computational resources, gradually gather

together and improve the above ingredients.

The journey is not without peril. One great temp-

tation that researchers must resist is optimizing for a

specific task. Although such improvements can be use-

ful at the time when the invention was made, they have

little, sometimes even negative, contribution towards

the elusive final goal of solving language understand-

ing problems. Many researchers go astray along this

journey.

2.1 Traditional Feature Engineering

The Bag-of-Words (BoW) model yields a simple rea-

lization for the text representation [13]. It presents the

text as a set of its words and calculates the frequency

of occurrence per word. TF-IDF is another word em-

bedding technique [14]. It calculates the two statistical

values, term frequency (TF) and inverse document fre-

quency (IDF), and multiplies those two values, such

that it can indicate the significance of the rare words in

the document. These simple methods have attained

considerable improvement in language modeling and

3○https://cloud.google.com/ai-platform/data-labeling/pricing, Dec. 2021.
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Table 1. Overview of the Dots of Self-Supervised Learning Methods in Natural Language Processing, Computer Vision, Graph
Learning, Audio Processing, and Protein Learning

Field Local Modeling Global Modeling
Discriminative Modeling Generative Modeling Discriminative & Generative

Natural Word2Vec [10] BERT [4] GPT [25] –

language BoW [13] Collobert et al. [15] GPT-3 [26]

processing TF-ID [14] SA-LSTM [16]

ELMO [17]

ULMFiT [18]

RoBERTa [19]

XLNeT [20]

ALBERT [21]

ELECTRA [22]

DeBERTa [23]

T5 [24]

Computer Patch position prediction [8] DIM [35] MAE [6] –

vision SIFT [27] AM-DIM [36] BEiT [44]

HOG [28] CMC [37] MaskFeat [45]

SURF [29] MoCo [38]

Exemplar CNN [30] SimCLR [39]

Counting [31] MoCo v2 [40]

Jigsaw puzzle [32] SimSiam [41]

Unsupervised tracking [33] DINO [42]

Ego-motion [34] BYOL-A [43]

Graph DeepWalk [46] DGI [48] Graph-GAN [53] –

learning node2vec [47] InfoGraph [49] GPT-GNN [54]

GRACE [50]

CMVR [51]

GROVER [52]

Audio Mel-spectrograms [55] HuBERT [7] Mockingjay [11] wav2vec-C [9]

processing CPC [56] APC [63] PASE [66]

wav2vec [57] VQ-APC [64] PASE+ [67]

COLA [58] TERA [65]

CLAR [59]

CLMR [60]

BYOL-A [43]

vq-wav2vec [61]

wav2vec 2.0 [62]

Protein PCF [68] CPCProt [71] TAPE [72] –

learning PSSM [69] UniRep [73]

ProtVec [70] SeqVec [74]

UDSMProt [75]

PLUS [76]

ESM [77]

ProtTrans [78]

PMLM [79]

HJRSS [80]

MSA transformer [81]

Local
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Fig.1. Diagram of the progress of SSL in the NLP field.
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text classification tasks. However, they cannot under-

stand the semantic meaning of the text, limiting the

capacity of machine understanding.

2.2 Early Attempts on Global Modeling

In the deep learning era, let us begin our re-

count with the seminal work, proposed by Collobert

et al. in 2011 [15]. Prior to this work, the majority

of the state-of-the-art systems were built upon task-

specific features. This work addresses each task inde-

pendently with linear models on top of features that

contain a large body of manually designed linguistic

knowledge. Different from these systems, Collobert

et al. learned contextualized intermediate representa-

tions through language modeling (LM), i.e., estimating

the acceptability of a word given the previous words

in a sentence [15]. Through this classical pretext task

in language learning, [15] performs full network pre-

training on convolutional neural networks (CNNs) and

fine-tuned the network on multiple downstream bench-

marks. This visionary design includes both full-network

pre-training and long contextualized embedding. How-

ever, without using GPUs, this approach was still too

expensive to compute. Early attempts on global mod-

eling were limited due to the computational constraint.

2.3 Falling Back into Local Modeling

As the global modeling in [15] was computation-

ally demanding, this method was not so popular as

another local, shallow, and lightweight method called

Word2Vec [10], which appeared two years later in 2013.

In order to train on a larger dataset, Mikolov et al. [10]

shortened the input window size to 5 and only used a

one-layer MLP as the network. Specifically, they used a

linear network to either predict middle words from four

neighboring words (CBOW) or the four neighboring

words from the middle word (skip-gram). The trade-off

among the data size, network size, and context size was

a huge success at that time. In fact, it was so success-

ful that follow-up researchers even called into question

“the importance of the full neural network structure

for learning useful word representation”. However, al-

though good word embeddings helped to improve the

performance of language tasks in general, they also en-

couraged researchers to design task-specific networks on

top of pre-training embeddings. A number of follow-up

studies went astray along that direction and later on

were proved to be meaningless.

2.4 Global Modeling Regaining Its Strength

It was not until 2015 that Dai and Le revisited

the full network pre-training strategy in the SA-LSTM

model [16]. They used both LM and sequence autoen-

coder which reconstructs the input sequence from the

hidden states as their pre-training target and showed

that sequence autoencoder was a better choice as a

pre-training model. It was also observed that a well

pre-trained model did significantly improve the perfor-

mance of multiple downstream tasks. However, their

networks were still shallow and only pre-trained on a

relatively small target dataset, which limited the power

of pre-training. Full-network pre-training still did not

get popular.

2.5 Full Prosperity of Global Modeling

Finally, in 2018, the NLP community met its year

of wonder. In February, Peters et al. introduced a new

type of deep contextualized word representation called

ELMO [17]. Compared with CBOW and skip-gram,

ELMO was pre-trained on a larger network, and used

a bidirectional language model and a much longer con-

text. It pre-trained a fix contextualized word embed-

ding through a 2-layer bidirectional LSTM. At roughly

the same time, a similar method called ULMFiT was

proposed by Howard and Ruder [18]. Instead of using

a fixed word embedding, they proposed to fine-tune

the deep pre-trained network and further increased the

depth of the network. In June, Radford et al. suggested

to pre-train a transformer decoder, which is a typical

architecture of modern language model [25]. This new

method was called GPT and it had a much larger net-

work compared with previous approaches. The ability

to model contexts was also stronger compared with the

LSTM or CNN methods. Devlin et al. proposed the

now well-known BERT model [4]. In BERT, the model

pre-training is realized by a new pretext task, namely,

the masked language model (MLM), i.e., masking some

of the words in the inputs and recovering them through

the network. BERT also further increases the data scale

by including both the book corpus and the Wikipedia

dataset. The simplicity of the model, its significant

performance improvements, and the easy-to-use toolk-

its made BERT extremely popular.

On top of BERT, there are several variants

including RoBERTa [19], XLNeT [20], ALBERT [21],

ELECTRA [22], DeBERTa [23], T5 [24], etc. Most of

these models increase the data size, increase the model
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size, or design a better objective function. For exam-

ple, as compared with BERT, RoBERTa is trained on

larger datasets with longer training time; ALBERT is

a much wider network (although the network size is

smaller through sharing the parameter cross layers);

ELECTRA replaces the MLM task with a task of pre-

dicting whether a token is generated or not, so that

it calculates losses in all the token position; DeBERTa

combines LM and MLM objectives together, and T5

converts all text-based language problems into a text-

to-text format and trains a much larger model (1.5 bil-

lion parameters).

Although the above methods gain significant perfor-

mance improvement over BERT, they still follow the

pre-training fine-tune scheme, where the labeled data

is needed. In contrast to the above approaches, GPT-

3 [26], proposed by Brown et al., shows that when the

pre-trained model is larger enough, one can remove

the necessity of fine-tuning the model, and instructions

including basic information about the task can gene-

rate appealing text. This progress from large networks

brought the SSL in language to a brand new high level.

2.6 Epilogue in NLP

Looking back, improved network architecture like

Transformer [82] and bigger datasets have fueled a rev-

olution in SSL. Transformer [82], although initially in-

vented for machine translation — a typical supervised

method, enabled us to create a much larger and deeper

network in SSL and currently is the main architecture

for most of the SSL tasks. Because SSL with Trans-

former can continuously benefit from larger architec-

tures and larger quantities of data, one of the biggest

trends for SSL in NLP has been the ever-increasing

model size [83].

Also, the development of SSL in NLP has a great

influence on other research fields. For example, the

Transformer architecture is also preferable as a feature

extractor in the CV field. In the following Sections 3–6,

we will briefly introduce the important dots of SSL in

other research fields.

3 Self-Supervised Learning in Computer

Vision

Learning discriminative representations of visual

data (e.g., image embedding or video embedding) in a

self-supervised fashion have been considered as an im-

portant problem in the CV community. In CV applica-

tions, the input data is images or a sequence of video

frames, composed of well-structured discrete RGB val-

ues. However, labeling a large number of images is

expensive, and the cost increases dramatically for the

task of pixel-level prediction, i.e., semantic segmenta-

tion. For example, annotating the pixel-level label per

2 048 × 1 024 image costs more than 1.5 hours [86]. To

avoid the reliance on human effort for the data, SSL,

therefore, becomes a useful tool to build a pre-trained

feature extractor.

By looking back at the progress of SSL in visual

data, its development is in line with this intuition from

local modeling to global modeling (see its progress dia-

gram in Fig.2). However, different from NLP, the local

modeling in CV only happens in the data part. For the

network part, the pre-training is on the whole network

CV
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from the beginning. We conjecture that it is because

of the efficient computation of CNNs and the high ac-

curacy bar brought by the supervised pre-training on

ImageNet [87].

3.1 Traditional Feature Engineering

The traditional feature engineering for visual data

creates the image descriptors. The scale-invariant fea-

ture transform (SIFT) [27] was proposed by Lowe in

2004. SIFT is invariant to image transformation (e.g.,

scaling or rotation); hence, it can perform reliable

matching between different views of an object. HOG

improves SIFT by counting occurrences of gradient ori-

entation in localized portions of images [28]. Beyond

SIFT descriptor, a fast algorithm, called SURF, was

further invented [29]. Its feature descriptor is based on

the summation of the Haar wavelet response around

the point of interest. It leverages the multi-resolution

pyramid technique to realize the blurring effect and to

guarantee the scale-invariant property of the interesting

point.

3.2 Local Modeling on Patches

Early work of learning highly-discriminative visual

representations leveraged the local cues within images.

The work, exemplar CNN, samples a set of 32 × 32

patches from the same image and applies various data

transformations to each patch [30]. These patches from

one image are grouped into one category, such that a

network can be trained to discriminate between a set of

categories. Understanding the visual concepts is nece-

ssary for the feature extractor and the Counting in [31]

defines a counting rule in the pre-text task, which trains

the network to recognize visual primitives, e.g., noses,

eyes, by means of correctly predicting the counting re-

lationship.

To make the network understand both the scenes

and objects, another famous work utilized the spatial

position of patches of one image as labels and model

the SSL as a task to predict the spatial relationship

between patches [8]. In doing so, a pair of patches are

sampled per image and is fed to a network which is re-

quired to predict the relative position of two patches

to learn more inherent visual information. Following

the intuition that doing a complex task well requires

more knowledge, a jigsaw puzzle game, where the ob-

jective trains the network to place shuffled patches back

to their original positions, was further proposed as a

pretext task in SSL [32]. In [32], all patches are shuf-

fled and independently fed into an encoder, such that

the encoder can jointly learn the feature embeddings of

patches and the associated spatial arrangement. More

challenging settings were also investigated in [88,89].

The initial development using local features has

shown positive results for SSL. Increasing the recep-

tive field of images becomes a possible way for further

study.

In [33], unsupervised tracking is performed as a

pretext task. That is, the visual tracker provides a

query patch and a positive patch from the same video

and samples a negative patch from other videos, such

that the patch features can be optimized by the triplet

loss [82]. In contrast to tracking the moving objects, es-

timating the motion from the camera for videos (a.k.a.,

ego-motion) is further considered later in [34], where

the objective is to synthesize a targeted view using the

depth and pose features. These video-based methods

can learn robust features but have difficulty applying

them to image tasks, because of the domain gap be-

tween videos and images.

The SSL for visual data at an early age was achieved

by defining complex pretext tasks, and most of the pre-

text tasks used the local features of an image/video.

Even though it has achieved considerable improvement,

it has difficulty in encoding the holistic representa-

tion. However, objects within image/video are well-

structured, and such structured information indeed af-

fects the representation power. This issue can be ad-

dressed by discriminative modeling or generative mod-

eling, which learns the global representation of images.

3.3 Discriminative Global Modeling from

Augmented Data

In the discriminative modeling, the basic idea re-

lies on the Noise Contrastive Estimation (NCE) [85]. In

NCE, a positive pair only contrasts with one negative

pair, which is similar to the triplet loss [84]. A more

general formulation is called InfoNCE [56], where a posi-

tive pair contrasts with many negative pairs 4○. In the

NCE or InfoNCE framework, two main groups of ap-

proaches are studied to realize SSL, i.e., mutual infor-

mation estimation and contrastive learning scheme. In

the following, we will briefly introduce those two types

of methods.

4○For reading friendly, mathematical formulations are omitted in this article. We refer the interested readers to [56, 85] for more
details.
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3.3.1 Mutual Information Estimation

The methods using mutual information (MI)

achieve SSL by jointly estimating and maximizing MI,

and MI can also be presented by the NCE value. Intu-

itively, maximizing the MI of two variables can align the

associated distributions. In the CV field, the variables

can be modeled as different views of images. The sem-

inal work, Deep InfoMax (DIM), models the variables

as global context features and local region features [35].

That said, maximizing the MI between global features

and local features forces the network to encode the con-

sistent information of global and local features of im-

ages.

Exploration of better ways to model the variables for

MI was studied in the following work [36, 37]. Augmented

Multiscale DIM (AM-DIM), applies various augmenta-

tion skills to context and region features of the same im-

age, thereby enforcing the deep network to learn a high-

level image representation that is robust against the di-

versity of data transformation [36]. In [37], contrastive

multiview coding (CMC) calculates the MI value be-

tween global features, and such features are encoded

from the same images with different views. This set-

ting enables networks to learn the view-invariant fac-

tors of images. Even though CMC optimizes the MI

as the objective, it has a fundamental difference from

DIM and AM-DIM in that CMC considers the global-

to-global MI, while infoMax and AM-DIM optimize the

global-to-local MI.

3.3.2 Contrastive Learning Scheme

Learning with a contrastive scheme is also a natu-

ral idea in supervised representation learning [84, 90,91]

and has been studied extensively in recent years for

SSL. In [38], He et al. developed MoCo, which adopts

two encoders to the same image, leading to a posi-

tive pair. MoCo also proposes a momentum contrastive

scheme, which significantly enlarges the number of neg-

ative pairs. Despite its effectiveness, creating positive

pairs without using data augmentation makes the en-

coder easy to distinguish positive pairs. This issue is

addressed by another seminal work, SimCLR, proposed

by Chen et al. [39]. SimCLR establishes a general frame-

work for SSL using a contrastive scheme [39]. Similar to

CMC [37], SimCLR adopts 10 data augmentation tech-

niques and each positive pair can be constructed by ap-

plying two random augmentations to the same image.

More importantly, the authors also conducted heuristic

experiments to study the correct usage of contrastive

loss. To be specific, it is observed that a large batch

size, non-linear projection heads, deeper networks, and

more training steps are essential factors for a good prac-

tice of contrastive loss. The MoCo v2 justifies the effec-

tiveness of such training methods by integrating them

into the MoCo framework [40].

In contrast to work in [39, 40] adopting more neg-

ative pairs in infoNCE loss, both BYOL and SimSiam

avoid collapsing solutions during the optimization pro-

cess even without using negative pairs [41, 92]. It is ob-

served from BYOL [92] that using a static key encoder

(referred to as target encoder) can avoid the collapse

because the static network is not trained. With such

an observation, BYOL trains a query encoder (referred

to as online encoder) as in the common practice and

iteratively updates the key encoder with a moving ave-

rage of the query network. The same idea also occurs

in SimSiam [41], whereas two encoders are identical, and

a projection head is added to one of the encoders, cre-

ating two views of features.

The success of Transformer architecture (i.e.,

BERT) in the NLP field suggests using Transformer as

an alternative building block of the backbone network,

which is verified in the Vision Transformer (ViT) [93].

DINO further bridges the gap between ViT and SSL,

i.e., training a ViT in a self-supervised manner, and re-

veals that the Transformer architecture can learn class-

specific semantic information [42]. DINO follows the

form of self-distillation that contains a teacher net-

work and a student network and optimizes the objec-

tive of the cross-entropy loss calculated between the

features from the student and the central feature from

the teacher.

Discriminative modeling indeed makes significant

progress as a pre-training technique, and the recog-

nition accuracy on ImageNet is very close to the su-

pervised learning. However, because all of these ap-

proaches are built upon the concept of distinguishing

the augmented data from all other data, it is not so

difficult as generative tasks in general. Its further im-

provement is stepped by using the generative ideas from

NLP.

3.4 Generative Modeling Through Recovering

Missing Image Patches

Inspired by the significant progress of generative

modeling in NLP, one can also consider adopting such

models (e.g., GPT or MLM) as candidates to learn im-

age representations.
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In [5], the image is operated via downsampling and

flattening, obtaining a 1D sequence, which is then fed to

a generative model, i.e., GPT, to realize the pixel gene-

ration objective. Despite that iGPT only generates low-

resolution images, it shows its potential that it achieves

SOTA performance as compared with its competitors

in low-resolution representation learning. Recovering

masked pixels, which mimics the pipeline in MLM, is

also studied in BEiT [44]. Training a BEiT consists of

two steps, with the first step that an auto-encoder is ap-

plied to tokenize the patch features. Then the masked

image modeling (MIM) is used as a pre-training task,

which trains the network to predict the masked visual

tokens. A simpler yet effective method, MAE, proposed

by He et al., further simplifies the training paradigm

in that it trains an asymmetric auto-encoder to con-

struct the masked patches [6]. Appealing performance

is observed that the trained auto-encoder can recover

images with only 25% visible patches. Recent work,

termed MaskFeat, proves that the model’s prediction

in the feature space (i.e., HOG features) is much better

than that in pixel spaces [45].

3.5 Epilogue in CV

With the large-scale application of Transformer in

the field of CV, the development of SSL in NLP and

CV is getting approach. Although the development of

SSL in CV bears the imprint of NLP, CV has also be-

gun to feedback on the development of NLP. For exam-

ple, SimCSE [94] uses dropout as minimal data augmen-

tation for sentence embedding and applies contrastive

learning on top of pre-trained model like BERT [4] or

RoBERTa [19]. The resulting pre-training model signifi-

cantly outperforms the original models.

4 Self-Supervised Learning in Graph Learning

Graph data is presented by a set of nodes, with

linked ones being related. Unlike other formats of data,

the graph can model a number of graph-structured

data, e.g., the social networks, molecules, knowledge

graphs. Addressing problems with graph data is not

easy and the emergence of graph neural networks

(GNNs) makes the solutions flexible and easier. That

said, once the input data is modeled as a graph, the

GNNs provide a powerful framework for the tasks at

hand, e.g., node predication, edge prediction, or graph

predication. The recent trend also shows promising re-

sults by employing the SSL on GNNs for pre-training.

Its various applications make the progress from local

modeling for node-level tasks to global modeling for

graph-level tasks, shown in Fig.3.

4.1 Traditional Feature Engineering

An early solution of learning graph embeddings

uses walks to traverse the graph and aggregates the

connected node representations. This is known as

DeepWalk [46], and it learns the node representations

by leveraging the skip-gram from Word2Vec [10].

Graph node2vec

NLP

CV

DGI GRACE

GPT

DeepWalk InfoGraph CMVR

GROVER

With

Full Graph

DIM SimCLR

Full 

Graph

Generation

Transformer

Word2Vec

Milestone
Important

Improvement

Local

Modeling

Global

Modeling

Traditional

Feature
Engineering

Graph-GAN GPT-GNN
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Fig.3. Diagram of the progress of SSL in the graph learning field. Note that the dashed boxes and the dashed arrows indicate the
methods from other research fields and the inspiration paths, respectively.
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4.2 Local Modeling as a Way of Embedding

Nodes

In dealing with the SSL for graph data, it comes to

mind that the local modeling can be a straightforward

choice as that in the NLP and CV fields. Similar to

Word2Vec in NLP, node2vec was proposed for graph

data [47]. Using the network neighborhoods of nodes as

supervision signal, node2vec establishes node presenta-

tions that keep the connection relationship the same

between the graph space and the embedding space. As

in the CV field, graph learning also includes discrimi-

native and generative modeling.

4.3 Discriminative Modeling Maximizing the

Similarity of Different Views

The discriminative modeling of SSL for graph-

structured data also follows closely the progress of the

visual data, where the main categories are MI estima-

tion and the contrastive learning scheme.

The graph counterpart of DIM, termed Deep Graph

Infomax (DGI), was developed in [48]. In DGI, a graph

convolutional network (GCN) is trained to learn node

representations by the infoNCE objectives, thereby

maximizing MI between the local patch representations

and the global graph representations. In practice, the

local patch representation is the high-level node feature,

aggregated from the node and its neighborhoods, and

the global graph representation is summarized by the

readout function over node features. A similar idea was

extended to InfoGraph [49], where a GIN is trained to

encode the graph representations.

Its further improvement derives from the success

of the contrastive scheme [50, 51]. A simple attempt is

performed in GRACE [50] that the representation per

node is optimized by maximizing the agreement of two

graph views, where the graph views are constructed

by removing edges to neighbors and masking node fea-

tures. In [51], a new method, namely, CMVR, investi-

gates a new method to create different views per graph.

Given a raw graph, another view is created by graph

diffusion. The origin graph and the augmented graph

are fed to two separated GCN encoders respectively, to

obtain both node features and graph features, which

are then optimized by contrasting the node represen-

tations from one view to the graph representations of

another view. In contrast to establishing various views

for graphs, GROVER defines a pretext task that pre-

dicts the contextual properties of the node/edge and

adopts Transformer, jointly learning representations for

graphs [52].

4.4 Generative Modeling via Generating
Graph Components

Generative modeling on graph data relies on

two pipelines, i.e., generative-adversarial and auto-

regressive [53, 54]. Under the framework of GANs, Gra-

ph-GAN is composed of two networks, i.e., a generator

and a discriminator [53]. For each node, the generator

aims to learn the underlying connectivity of all nodes

and generates a graph as a fake sample. Then the dis-

criminator can tell the connectivity of true pairs and

false pairs.

The generative pre-training is realized in GPT-

GNN [54]. To achieve so, self-supervised attributed

graph generation is defined as a pre-training pretext

task. By the generative process for both node attributes

and edges, the network can capture the inherent de-

pendency of the underlying graphs, thereby producing

powerful representations.

4.5 Epilogue in Graph Learning

As suggested by the above SSL methods, we can find

that researches in both NLP and CV are the sources of

ideas for the SSL in graph learning, though the for-

mat of graph data is significantly different from that

of text and images. This indeed shows the importance

of interdisciplinary research. We believe the generative

modeling over the Transformer architecture [82] would

be an important direction to explore.

5 Self-Supervised Learning in Audio

Processing

Audio data is a format of time sequence being con-

tinuous in both time and amplitude. To facilitate ana-

lysis, the audio signal is normally split into clips with

duration varying from hundreds of milliseconds to sev-

eral seconds depending on the task at hand. According

to the frequency spread, the audio signal is sampled in

time with a rate of, e.g., 16 kHz 5○. Assuming that the

signal is stationary (with invariant frequency compo-

nents) in one frame, each sampled audio clip is further

split into frames with a constant frame length, e.g., 10

milliseconds. The raw audio samples can be directly

fed to a neural network as input, or alternatively, a

feature vector can be extracted for each frame in the

frequency domain, e.g., the log-Mel (log-magnitude in

5○It means the audio signal consists of 16 thousand samples per second.
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Mel-Frequency) feature. With this feature representa-

tion, an audio clip is represented as a matrix with axes

of frequencies and time frames, which is called a spec-

trogram. Audio units, such as speech phones, sound

events, and music notes, have varying lengths and nor-

mally occupy multiple frames. The application over au-

dio data includes clip-level tasks and frame-level tasks.

Its SSL pre-training has been developed rapidly

since 2019, and many ideas are inspired by the NLP/CV

field. Due to the fact that audio frames have strong

temporal dependencies, including short-term depen-

dencies due to the signal smoothness within audio units,

and long-term dependencies between audio units re-

flecting the semantic information, the modeling of SSL

mainly focuses on discriminative modeling and gener-

ative modeling for the contextual/global embedding.

(Refer to Fig.4 for its progress diagram.)

5.1 Traditional Feature Engineering

In the traditional feature engineering, the au-

dio representations can be represented by the Mel-

spectrograms [55], which are calculated from the log-

magnitude spectrum. Due to the property of the spec-

trum features, it can preserve both the frequency reso-

lution and amplitude of a signal.

5.2 Discriminative Modeling via Contrastive
Scheme

The discriminative modeling in audio data mini-

mizes a pretext classification loss. In [56], targeting

the task of future frame prediction, CPC aims to cor-

rectly classify the positive frames (future k frames) from

a set of negative frames (other frames in the audio).

Pre-training for a downstream task, i.e., speech recog-

nition, is realized by wav2vec [57], where MI between

the speech context embedding and the future frame

embeddings is maximized. Extending the idea from

SimCLR [39], some methods, e.g., COLA [58], CLAR [59]

and CLMR [60], propose to create positive samples in

the contrastive objective for the clip-level feature learn-

ing. Similar to SimCLR, CLAR applies various data

augmentations to the same audio clip, leading to a posi-

tive pair [59]. The follow-up work, CLMR [60], uses the

same strategy for the music data. While in COLA, the

positive pair is defined as two segments in the same au-

dio recordings [58]. Note in both cases, for an anchor

sample, any different audio clips in a mini-batch are se-

lected as negative samples. Considering the fact that in

the audio data, negative samples are possibly similar to

the anchor sample in some scenarios, BYOL-A [43], the

audio version of BYOL [92], removes the negative pairs

in the contrastive learning.

Research efforts were also made to benefit the pow-

erful Transformer architecture as a feature extractor

for audio data. However, it brought the issue that

unlike the words in a text with discrete tokens, audio

frames are real-number vectors. In vq-wav2vec [61] and

wav2vec 2.0 [62], the real-number hidden units of au-

dio frames are clustered via either Gumbel-Softmax or

online k-means algorithms, so as to assign a discrete

token to each audio frame. With these discrete tokens,
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method from other research fields and the inspiration paths, respectively.
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it is ready to use the BERT [4] model for SSL of audio

data. The follow-up work, HuBERT, applies the offline

clustering method to produce the discrete tokens [7].

5.3 Generative Modeling via Audio
Reconstruction

The development of SSL in the NLP and CV fields

also feeds many ideas in generative modeling for au-

dio data. Early studies on audio SSL adopt the clas-

sic denoising autoencoder [95, 96] by embedding the in-

put to a bottleneck hidden representation and then

reconstructing the input from the hidden representa-

tion. APC [63] and VQ-APC [64] follow the line of auto-

regressive learning used for LM. Different from CPC [56]

and wav2vec [57] that use the contrastive classification

loss, APC and VQ-APC directly predict the input fea-

ture of future frames and use the `1 loss between the

true feature and the predicted one. Mockingjay mimics

BERT to predict the masked input feature of one frame

conditioning on both past and future frames, and also

uses the `1 loss between the true feature and the pre-

dicted one [11]. TERA extends Mockingjay by not only

masking frames, but also masking frequencies and con-

taminating spectrogram with noise [65].

5.4 Multi-Task Modeling as Joint
Discriminative and Generative Training

Both discriminative modeling and generative mod-

eling boost the representation power of SSL via

multi-task training. PASE [66] and its improvement

PASE+ [67] jointly train a model for regression and

discriminative tasks. To better preserve meaningful in-

formation in the latent space, wav2vec-C [9] was deve-

loped to reconstruct the audio signal from the latent

space, in conjunction with the training target of con-

trastive loss in wav2vec 2.0. Splitting the audio spectro-

gram into patches, SSAST learns audio representations

supervised by contrastive loss and generative loss in the

BERT model [97].

5.5 Epilogue in Audio Processing

Given the fact that the audio data can be processed

either by a sequence of frames or a spectrogram, the

ideas from both the NLP and CV fields promote the

development of the SSL for audio data, again show-

ing the necessity and potential of interdisciplinary re-

search. Although audio data is continuous by nature,

currently the superior performance is still achieved with

discriminative learning by constructing a pretext clas-

sification task. Generative learning alone, or combined

with discriminative learning, has not yet been very suc-

cessfully developed.

6 Self-Supervised Learning in Protein

Learning

The protein sequence is composed of ordered amino

acids sequentially, and each protein consists of 20 com-

mon types of elements and several uncommon ones [72].

The evolution process selects the protein with a suitable

function, thereby biasing the protein distribution, and

such distribution results in special dependencies among

amino acids in protein [98]. The dependency property

can be used to define the pretext tasks for SSL.

The protein structure results from the compli-

cated physical and chemical interactions among amino

acids, such that a protein with a specific function folds

into a specific shape in space. In the protein learn-

ing community, the multiple sequence alignment (MSA)

is a useful tool to identify the dependencies of the

protein [99]. The MSA consists of a group of aligned

homologous sequences, which includes the co-evolution

pattern, and such co-evolution patterns can indicate

dependencies. Recently, the language models built on

top of protein sequences have also encoded the de-

pendencies of amino acids within a protein sequence.

(Refer to Fig.5 for an illustration of concepts in protein

data.)

Therefore, the protein structure, MSA, as well as

the protein sequence, can be used to identify the de-

pendencies in protein, and the mapping function can

be learned by SSL. Its progress is suggested in Fig.6.

6.1 Traditional Feature Engineering

The initial method, namely Protein Coding Fea-

tures (PCF), to represent the protein structure is

determined by the protein sequence of amino acid

residues [68]. That is, each amino acid is encoded by

a one-hot vector, with only the element of the amino

acid being a non-zero value. The MSA information [99]

can also be leveraged to represent the protein features.

For example, the PSSM for homologous sequences cal-

culates the substitution log-likelihood of the occurrence

per amino acid at each position [69].

6.2 Local Modeling and Discriminative
Modeling by Using Amino Acids

The protein data is a sequence of amino acids,

which is similar to the language data. That said,

creating discriminative protein representation can fol-

low the success in the NLP field, such that the
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methodology includes learning the local amino acids

feature and the global protein context feature. In-

spired by Word2Vec [10], its local modeling is studied

in ProtVec [70]. ProtVec groups every three contigu-

ous amino acids of the protein as a word and employs

the Word2Vec technique to train a context-independent

embedding of the protein. Following the development

of representation learning in NLP and CV fields, the

global modeling of protein data is also studied. In the

discriminative modeling, the contrastive scheme bene-

fits the protein data to establish its representation via

optimizing the infoNCE objective in CPCProt [71]. Fol-

lowing the framework of the CPC contrastive model [56],

CPCProt maximizes the MI between embeddings of a

protein fragment (i.e., local feature) and its context

(i.e., global feature). The only difference here is that

CPCProt replaces the image patch with a certain num-

ber of amino acids.

6.3 Generative Modeling by Treating Each

Amino Acid as a Word

In protein learning, generative modeling dominates

the community, probably attributed to the fact that

it is difficult to define a positive sample for an anchor

protein. In generative modeling, many ideas are derived

from the NLP field. Following the format of language

data, protein, a sequence of amino acids, can be mod-

eled as a sequence of tokens and the sequence contains

the long-range dependencies of protein.
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UniRep [73] takes a single amino acid as a word and

uses the multiplicative LSTM [100] to train a generative

model in an auto-regressive manner [101]. Its further

improvement of the representation power adopts the

bi-LSTM models, such as SeqVec [74], UDSMProt [75],

PLUS [76] and P-ELMO [102]. The parallel computation,

realized by Transformer, is also studied in TAPE [72]

and more variants of Transformer-type models are in-

vestigated in ESM [77] and ProtTrans [78].

Inspired by the MLM protocol in NLP pre-training,

He et al. proposed the Pairwise Masked Language

Model (PMLM) and empirically justified that the pre-

training model incorporating PMLM is particularly

good at capturing co-evolutionary dependencies [79].

This improvement is mainly attributed to the fact that

the model of the joint probability of a pair of masked

tokens is much more delicate than the product of the

probability of a single masked token in the conventional

masked language model.

Considering the structure information in the model,

a de-noising task is defined in HJRSS [80] as a pretext

task for pre-training, where a network is trained to re-

cover both the token and the structure from the masked

tokens and the disturbed structure.

To understand more dependencies of amino acids,

one can also resort to MSA information. In doing

so, an MSA transformer is trained under the MLM

protocol [81]. In the MSA transformer, the dependen-

cies on all amino acids in sequences of an MSA are

built by the axis attention.

6.4 Epilogue in Protein Learning

As we can see, SSL methods for protein modeling

largely follow the development of SSL in NLP. This is

easy to understand as proteins are the language of na-

ture and they are also one-dimensional sequential data.

However, different from human language, proteins have

structures and MSA. How to leverage this additional in-

formation would be much more interesting than simply

applying SSL methods in language modeling to protein

modeling. We believe that MSA transformer [81] is just

a beginning, and we are looking forward to more excit-

ing breakthroughs.

7 Related Work

SSL has been the choice of learning representations

for various formats of data in the learning community,

and their research progress has been extensively sum-

marized in a number of survey papers [1, 3, 12,103]. In

this section, we will briefly introduce the existing survey

work for inter-disciplines, i.e., NLP, CV, graph learning,

protein learning and audio processing.

The work in [1] takes a look into these method-

ologies of SSL and groups them into three categories:

generative SSL, contrastive SSL, and generative-

contrastive SSL. Following this categorization, the SSL

on the applications of CV, NLP, and graph is considered

in the survey. Employing SSL as means of model pre-

training, a recent work [12] established a hands-on guide

for understanding, using, and developing pre-trained

models (PTM) on various NLP tasks. Another impor-

tant component of PTM, network models, is reviewed

in [3], where the training objective, model architectures,

over-parameterization issue, etc., are thoroughly intro-

duced over BERT-like architectures. A unified frame-

work using contrastive learning as the objective for

representations is surveyed in [104]. A new promis-

ing paradigm, dubbed prompt learning, is systemati-

cally studied in [105]. The success of Transformer in

NLP also inspires the researchers in CV to develop

a better visual feature extractor, i.e., Vision Trans-

former (ViT), and their progress is reported in the lat-

est manuscripts [106–108].

The progress of SSL on the graph-structured data

is also studied in many articles [103,109–111]. The survey

provides comprehensively studied mainstream learning

settings in graph neural networks (GNNs), i.e., su-

pervised learning, self-supervised learning, and semi-

supervised learning [109]. In [110], Xie et al. summa-

rized the SSL in GNNs and split the methodologies

into two groups, namely, the contrastive model and the

predictive model. The superiority of SSL in GNN is

justified in [111] that SSL brings better generalization

and robustness to GNNs. A deep understanding of the

training methods w.r.t. different pretext tasks on graph-

structured data is also empirically evaluated [103].

Endowing the capacity of identifying the protein

sequences with optimized properties to AI tools also

gains increasing interest in the biological field, and the

learning methodologies using deep neural networks are

also extensively surveyed [112,113]. Targeting the goal to

generate protein sequences, the articles [114,115] summa-

rize the methods of generative models.

Remark 1. In contrast to existing work, our survey

wants to thin the existing surveys, and mainly focuses

on the milestone work in SSL, thereby building the con-

nection to the dots. To be specific, the difference can be

summarized as follows.

• First, most surveys presented the development
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of SSL in an individual field (e.g., natural lan-

guage processing [2], computer vision [116], graph learn-

ing [103,109–111] or protein learning [112–115]), or only a

few fields [1, 104,117], while in our work, we thorough-

ly discussed the SSL over multiple disciplines (see the

comparison in Table 2).

• Second, existing surveys comprehensively pre-

sented the papers, making them lengthy and difficult to

digest. In contrast, our survey only selected a handful

of milestone papers and important work from each field,

making our survey easy to understand and the develop-

ment path clear.

• Third, instead of merely listing or categorizing the

papers in existing surveys, our article also connected the

main ideas via inter-disciplines, such that readers can

understand how SSL evolves and how different research

fields inspire each other.

8 Discussions and Future Directions

In this section, we would like to discuss the main

challenges and potential solutions for SSL.

Network Architecture and Knowledge Transfer. Re-

cent studies have showed that the Transformer-type ar-

chitecture consistently improves SSL in different fields.

However, the success of Transformer-type architecture

relies on the heavy parameters of the model. For ex-

ample, the parameter size of GPT-3 is up to 175 billion

for language understanding models [26] and the para-

meter number of DeepNet is up to 3.8 billion for vision

tasks [120]. Thus deploying such a large model on mo-

bile devices is not easy. That said, it is necessary to

develop efficient architectures, e.g., neural architecture

search (NAS), or algorithms, e.g., knowledge distilla-

tion, network pruning, to leverage the knowledge from

large models. Also, to address the issue of out-of-date

knowledge in machine [121,122], it is also useful to de-

velop self-supervised continual learning algorithms that

can endow the model to learn knowledge in a lifelong

manner.

Pre-Training Tasks. Recent advances of SSL are

converged to the generative modeling, e.g., GPT-

3 [26] in NLP, MAE [6] in CV, or GPT-GNN in graph

learning [54], and gained considerable achievements.

Nevertheless, the SOTA pre-training strategies require

either deeper architecture or large-scale data, result-

ing in expensive training cost. To mitigate this issue,

it is possible to investigate efficient pre-training tasks,

like ELECTRA [22]. In addition, another promising av-

enue to improve the model efficiency is to align mod-

els with user intent, e.g., InstructGPT [123], such that

the aligned model can save parameters while reaching

a good performance, which is on par with large-scale

models.

Model Reliability. The model reliability has been

a big issue in the deep learning community since the

decision-making process of such deep architectures is

non-transparent, such that the understanding of un-

seen sample for the pre-trained model is unpredictable,

limiting its deployment in real practice. The models’

Table 2. Overview of Differences of Our Work and Existing Surveys

Survey Year Natural Language Computer Graph Audio Protein

Processing Vision Learning Processing Learning

Liu et al. [1] 2021 X X X – –

Han et al. [2] 2021 X – – – –

Rogers et al. [3] 2020 – – – – –

Qiu et al. [12] 2020 X – – – –

Jin et al. [103] 2020 – – X – –

Le-Khac et al. [104] 2020 X X X X –

Waikhom and Patgiri [109] 2021 – – X – –

Xie et al. [110] 2021 – – X – –

You et al. [111] 2020 – – X – –

Gao et al. [112] 2020 – – – – X

Defresne et al. [113] 2021 – – – – X

Strokach and Kim [114] 2021 – – – – X

Wu et al. [115] 2021 – – – – X

Jing and Tian [116] 2021 – X – – –

Mao [117] 2020 X X – X –

Jaiswal et al. [118] 2021 X X – – –

Liu et al. [119] 2021 – – X – –

Ours 2022 X X X X X
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reliability can be improved by adversarial attacks or

adversarial defenses. While it still remains an open

problem, requiring further studies to understand the

model and improve its robustness.

9 Conclusions

Self-supervised learning (SSL) is an important step

in the road to improving the understanding of AI ma-

chines. The research community made numerous ef-

forts to push the boundary of development, recorded

by hundreds of publications. It is not easy for re-

searchers, especially beginners, to follow and under-

stand the progress in their own subjects. In this brief

article, we built a path of the important dots in SSL

development on various data, i.e., text, image, and

graph. This not only showed the progress of SSL in each

subject but also clearly explored the interaction of the

development between subjects, e.g., the Transformer

architecture invented in the NLP field inspired the

development of ViT in the CV field, or the contrastive

learning pipeline in CV field can also be extended in

the graph/audio learning field. Beyond the high-level

picture of SSL, we also believe that the development of

individual subjects can be inspired by other subjects,

and the research over cross-subjects is a useful way to

produce impact work.
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