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The retention time (RT) is a crucial source of data for liquid chromatography-mass spectrometry (LCMS). A model 
that can accurately predict the RT for each molecule would empower filtering candidates with similar spectra but 
differing RT in LCMS-based molecule identification. Recent research shows that graph neural networks (GNNs) 
outperform traditional machine learning algorithms in RT prediction. However, all of these models use relatively 
shallow GNNs. This study for the first time investigates how depth affects GNNs’ performance on RT prediction. 
The results demonstrate that a notable improvement can be achieved by pushing the depth of GNNs to 16 layers 
by the adoption of residual connection. Additionally, we also find that graph convolutional network (GCN) 
model benefits from the edge information. The developed deep graph convolutional network, DeepGCN-RT, 
significantly outperforms the previous state-of-the-art method and achieves the lowest mean absolute percentage 
error (MAPE) of 3.3% and the lowest mean absolute error (MAE) of 26.55 s on the SMRT test set. We also 
finetune DeepGCN-RT on seven datasets with various chromatographic conditions. The mean MAE of the seven 
datasets largely decreases 30% compared to previous state-of-the-art method. On the RIKEN-PlaSMA dataset, we 
also test the effectiveness of DeepGCN-RT in assisting molecular structure identification. By 30% lessening the 
number of potential structures, DeepGCN-RT is able to improve top-1 accuracy by about 11%.
1. Introduction

Liquid Chromatography-Mass Spectrometry (LC-MS) has been used 
to characterize small molecule structures for many years. However, de-

termining the structures of small molecules appears to be a challenging 
task in many fields, such as metabolomics and food analysis [1–5]. Al-

though the tandem mass spectrometry (MS/MS) information had been 
proven useful in characterizing structures, the number of molecules 
that have MS/MS information is usually limited. For example, Mass-

Bank [6], the most popular open-source MS/MS database, only has 
15055 unique compounds, while PubChem [7] and ZINC [8] contain 
96.5 million and 230 million unique small molecular structures, re-

spectively. The retention time can help to narrow down the number of 
annotation candidates by providing orthogonal information to MS/MS 
[9,10]. Small-molecule structural identification is often plagued by in-

source ion or false-positive structural identification [11–13]. Retention 
time can be used to mitigate these problems. [14–18]. Therefore, nu-
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merous effects have been made to accurately predict retention time 
[9,10,19].

Traditional retention time prediction methods rely on handcrafted 
features such as molecular fingerprints and molecular descriptors [10,

19,20]. Molecular fingerprints (e.g., extended-connectivity fingerprints) 
are a series of binary vectors that each number represents the existence 
or absence of a particular substructure, and they are often designed 
for similarity searching, clustering, and virtual screening [21]. Molec-

ular descriptors are real-valued vectors that quantitatively describe the 
physical and chemical properties of the molecules [22]. While hand-

designed methods have achieved promising results [23–26], end-to-end 
learning methods such as graph neural networks (GNNs) that directly 
take molecular graph embedding as inputs have greater potential as it 
learns to describe the molecule automatically. However, training a good 
GNN requires a large dataset. Luckily, METLIN recently released the 
small-molecule retention time (SMRT) dataset, which covers more than 
80,000 molecules from the METLIN library, analyzed by reverse-phase 
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liquid chromatography (RPLC) [27]. Based on this dataset, Yang et al. 
[28] built a custom GNN model named GNN-RT, which outperformed 
all other traditional methods including Bayesian ridge regression, ran-

dom forest, and shallow artificial neural networks using fingerprints or 
descriptors; Kensert et al. [29] implemented a relatively shallow graph 
convolutional network (GCN) with 5 hidden layers, and the model is 
better than the model developed by Yang et al. [28]. However, it is 
unclear that whether deep GNN can further improve the accuracy of 
retention time prediction.

Model depth has been proven to be an important factor for convolu-

tional neural network [30,31]. Recent researches also confirm that deep 
GNNs are indeed beneficial to the right level of task scale and/or com-

plexity [32–34]. Therefore, we explore whether deep GNN can improve 
the prediction accuracy of small-molecule retention time. Specifically, 
we design a deep GCN model, named DeepGCN-RT, which shows that a 
significant improvement could be accomplished by pushing the model 
depth to 16 GCN layers. DeepGCN-RT outperforms several previous 
state-of-the-art models, such as GCN [29], DNNpwa [26], and GNN-

RT [28] on the SMRT dataset. In addition to thoroughly comparing the 
performances of different GCN model depths, we confirm that residual 
connection is critical to train deeper GCN and that the edge information 
in the message passing will contribute to a increased model perfor-

mance.

We further investigate how DeepGCN-RT adapts to different chro-

matographic conditions by fine-tuning it on seven different datasets. 
We observe a stunning 30% average performance improvement on these 
datasets. To evaluate the performance of the RT prediction model, we 
utilize the RIKEN-PlaSMA dataset for molecular identification. We ob-

serve that the top-1 accuracy can be improved by 11% by lessening 
about 30% of the candidates. We thoroughly investigate the use of 
deep GCN in small-molecule retention time prediction. The results sug-

gest that the deep GCN is a competitive architecture, and the model 
developed could facilitate further structural identification in LCMS-

based molecular structure analysis. To facilitate further research, we 
released our model weights and source code of DeepGCN-RT at https://

github .com /kangqiyue /DeepGCN -RT.

2. Method

2.1. Dataset

The SMRT dataset contains the retention times of 80,038 molecules 
from the METLIN library analyzed by RPLC [27]. To compare the pre-

diction accuracy of our model with those reported in the literature, 
non-retained molecules were excluded, in line with the previously pub-

lished research [28]. The final set contains 77,980 molecules. We split 
the dataset into a training set and a test set, containing 70,182 and 
7,798 molecules, respectively. It should be noted that we used the same 
test set of SMRT with Yang et al. [28], Kersert et al. [29], and Ju et al. 
[26]. Therefore the results in this study could be directly compared with 
these of them. To train the model, the training set was further divided 
into a new training set and a validation set, with a split ratio of 9:1. 
The molecular retention times of the training and validation set ranged 
from 5.67 to 24.53 min, and their masses ranged from 113.08 to 738.88 
(Figure S1). The molecular retention times of the test set ranged from 
8.07 to 24.16 min, with masses ranging from 165.04 to 665.30 (Figure 
S1).

In addition, this study also evaluated DeepGCN-RT on seven 
datasets with various chromatographic conditions. RPLC datasets, in-

cluding Eawag_XBridgeC18 [35,36], FEM_lipids [37], FEM_long [38], 
IPB_Halle [39], LIFE_new [40], LIFE_old [40], and UniToyama_At-

lantis [6] were collected from PredRet [41]. These datasets contain 
different numbers of molecules, ranging from 72 to 420, and the 
molecules were eluted with different column types and eluent condi-
2

tions (Table S1). Therefore, these datasets are appropriate for assessing 
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Fig. 1. Schematic figure of DeepGCN-RT.

Fig. 2. The message passing process in normal GCN, and the improved edge 
message passing process in DeepGCN-RT.

the transfer learning performance of DeepGCN-RT. Detailed informa-

tion on these datasets, including the liquid conditions, retention time 
ranges, and the number of compounds in each dataset, can be found in 
the Supporting Information.

2.2. Graph construction

Molecules can be naturally represented in graph form [42], and 
therefore it is straightforward to convert molecules to graphs. The graph 
construction process maps the atoms and bonds of molecules into graph 
datasets containing nodes and edges. In this study, the Simplified Molec-

ular Input Line Entry System (SMILES) [43] strings of the molecules 
were converted to graph data using RDKit (version 2020.09) [44]. The 
atoms and bonds were transformed into nodes and edges of the graph, 
respectively. The atom properties and bond properties were converted 
to node features and edge features, respectively, following the proce-

dures proposed by Kensert et al. [29]. The atom features included atom 
type, chiral center type, chirality, degree of the atom, formal charge, hy-

bridization, aromaticity, hydrogen donor or acceptor, heteroatoms, in a 
ring of a particular size, number of hydrogens, number of radical elec-

trons, number of valence electrons, Crippen LogP contribution, Crippen 
molar refractivity contribution, Gasteiger charge, mass, and the acces-

sible surface area contribution (Table S2). The bond features included 
bond type, conjugated type, whether part of a ring or not, whether ro-

tatable or not, and stereo-information (Table S2).

2.3. Model layer for GCN and DeepGCN-RT

The schematic figure of DeepGCN-RT is showed in Fig. 1. We first 

implemented the normal GCN model, which was used as the baseline 

https://github.com/kangqiyue/DeepGCN-RT
https://github.com/kangqiyue/DeepGCN-RT
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in our study, following the procedures proposed by Kipf et al. [45] and 
Kensert et al. [29], as shown in Equation (1) and Fig. 2.

𝒉𝒗
𝑙+1 = 𝜎(𝑏𝑙 +

∑

𝑢∈ (𝑣)

1
𝑐𝑢𝑣

𝒉𝒗
𝑙
𝑾

𝑙) + 𝒉
𝑙
𝒗

(1)

where  (𝑣) is the set of neighbors of node 𝑣, 𝑐𝑢𝑣 is the product of the 
square root of node degrees, and 𝜎 is an activation function. Specifi-

cally, for the model without residual connection, we just implemented 
the model the same as above except removing the term of 𝒉𝑙

𝒗
.

Inspired by Li et al. [46], we implemented our DeepGCN-RT model 
that considered the edge information and residual connection in the 
message passing process. Let 𝒖 ∈ ℝ𝑚, 𝒗 ∈ ℝ𝑚, and 𝒆 ∈ ℝ𝑛 represent the 
source node, the destination node, and the edge attributes between 
them, respectively. The message of source node 𝒉𝑙

𝒖
is first transformed 

to vectors from the raw features (including one-hot and other features) 
with a linear layer. The message of the edge information 𝒉𝑙

𝒆𝒖𝒗
is also 

transformed to vectors. Then the vector of the source node and that of 
the edge is summed The message of source node 𝒉𝑙

𝒖
is summed with the 

message of the edge 𝒉𝑙
𝒆𝒖𝒗

(Equation (2)):

𝒎
𝑙
𝒖𝒗

= 𝒉
𝑙
𝒖
+ 𝒉

𝑙
𝒆𝒖𝒗

(2)

The messages from the source node 𝒖 and edge 𝒆𝒖𝒗 are aggregated 
by softmax aggregation, as shown in Equation (3):

𝒎
𝑙 =

∑

𝑢∈ (𝑣)
(

exp(𝒎𝑙
𝒖𝒗
)

∑
𝑢∈ (𝑣) exp(𝒎𝑙

𝒖𝒗
)
⋅𝒎𝑙

𝒖𝒗
) (3)

where  (𝑣) is the set of neighbors of node 𝑣, 𝑒𝑥𝑝 is the exponential 
function.

Then 𝒎𝑙 is transformed through a linear function, an activation func-

tion. Besides, residual connection is performed by adding the message 
of 𝒉𝑙

𝒗
, as shown in Equation (4).

𝒉
𝑙+1
𝒗

= 𝜎(𝑏𝑙 +𝒎
𝑙
𝑾

𝑙) + 𝒉
𝑙
𝒗

(4)

where 𝜎 is an rectified linear unit (ReLU) activation function, and 𝑏𝑙 is 
the learnable bias.

2.4. Readout module

After the message passing process, the messages from each node are 
combined by a graph readout module. To get the graph embedding, av-

erage pooling use the average of each node’s embedding in the graph. 
In addition, this study imported a readout module based on the graph 
attention mechanism, as performed by Xiong et al. [47]. In general, 
one super-virtual node that connects every node in the graph is created, 
and its embedding is obtained by combining each node’s embedding us-

ing graph attention. Then, the updated embedding and the embedding 
obtained by the graph attention mechanism are fed into the gated re-

current unit (GRU) to obtain the final embedding of the molecule, as 
follows:

𝒉
𝑘,𝒄𝑘 =GRU(𝒉𝑘−1,𝒄𝑘−1) (5)

where 𝒉𝑘, 𝒄𝑘 are the k-times updated embedding of the graph and the 
embedding of the super-virtual node calculated by the graph attention 
mechanism, respectively. Specifically, 𝒉0 is calculated by summing the 
embedding of all nodes. Finally, the molecular embedding is fed into a 
dense layer to predict the retention time.

2.5. Training details

For the DeepGCN-RT model, the hidden dimension of the GNN lay-

ers for all models was 200, and the hidden dimension of the dense layer 
was 1024. The 𝑘 for the readout layer was set to 2. The DeepGCN-RT 
was trained on the training set of SMRT, and the validation set was used 
3

for model selection. The final performances were evaluated on the test 
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Table 1

Overall performance.

MAE (s) ↓ MedAE (s) ↓ MAPE ↓ 𝑅2 ↑

DeepGCN-RT 26.55 12.38 0.03 0.89

GCNa 29.4 15.02b 0.04 0.89

DNNpwaa 39.62 25.08 0.05 0.85

GNN-RTa 39.87 25.24 0.05 0.85

1D CNNc 34.7 18.7 0.04 -

a The results of the GCN, DNNpwa, and GNN-RT models were obtained from Kensert 
et al. [29], Ju et al. [26], and Yang et al. [28], respectively.

b To get the MedAE of GCN, We replicated the experiments of Kensert et al. [29]. We 
provided the replicated results in the Supporting Information.

c The results were abstracted from the paper of Fedorova et al. [51].

set to ensure transferability and generalizability. The learning rate was 
0.001, with a batch size of 64. The learning rate schedule was cosine 
annealing, and the dropout rate was 0.1. The Adam optimizer, Huber 
loss, and early stop strategy were adopted. The training was terminated 
if the validation loss failed to decrease after 30 consecutive epochs. Ad-

ditionally, the number of training epochs was limited to 200 to reduce 
time consumption.

The model performances were evaluated through metrics includ-

ing mean absolute error (MAE), median absolute error (MedAE), mean 
absolute percentage error (MAPE), mean square error (MSE), and 𝑅2. 
Detailed descriptions of the calculation of MAE, MedAE, MAPE, MSE, 
and 𝑅2 can be found in the Supporting Information. Each experiment 
was repeated three times with three different seeds, and the mean val-

ues and standard deviation values of the three runs were recorded. We 
chose the learning ratenumber, number of k as hyperparameters, and 
we determined them by grid-search. All GCN models were implemented 
in Python 3.6 with PyTorch (version 1.10.1 with CUDA 11.3) [48], DGL 
(version 0.8.0) [49], and DGL-LifeSci (version 0.2.9) [50].

2.6. Transfer learning

To test the transfer ability of our DeepGCN-RT model, we tested it 
on seven datasets from PredRet [41]: Eawag_XBridgeC18, FEM_lipids, 
FEM_long, IPB_Halle, LIFE_new, LIFE_old, and UniToyama_Atlantis. Ten 
rounds of 10-fold cross-validation were performed with 10 different 
seeds, and the results averaged over the 10 rounds were recorded. Dur-

ing the transfer learning process, all parameters were optimized. The 
transfer learning process was conducted by fine-tuning DeepGCN-RT 
with a batch size of 8. Adam optimizer and Huber loss were used with a 
learning rate of 0.001. Again, the maximum number of training epochs 
was 200, and the early-stop tolerance was 30 epochs. As a baseline, 
we also performed the 10 rounds of 10-fold cross-validation by train-

ing from scratch, which meant that we did not use the parameters of 
DeepGCN-RT.

3. Results and discussion

3.1. Overall performance

The performance of DeepGCN-RT was compared with those from 
several state-of-the-art models, including GCN [29], DNNpwa [26], 
GNN-RT [28], 1D-CNN [51]. The MAE of DeepGCN-RT was 26.55 s, 
while the MAEs of GCN, DNNpwa, GNN-RT, and 1D CNN were 29.4, 
39.62, 39.87 and 34.7 s, respectively. The prediction retention times 
had a relatively low prediction errors (Fig. 3). The MedAE of DeepGCN-

RT was 12.38 s, while the MedAEs for DNNpwa, GNN-RT, and 1D 
CNN were 25.08, 25.24 and 18.7 s, respectively. Overall, DeepGCN-

RT achieved an MAE decrease of 9.7% compared to GCN, and 33%, and 
33.4% decreases compared to DNNpwa, and GNN-RT, respectively. The 
MAE, MedAE, and MAPE values of DeepGCN-RT were the lowest among 
all methods (Table 1), demonstrating the competitive performance of 

the DeepGCN-RT model.
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Fig. 3. Prediction results of DeepGCN-RT on the SMRT test set.

Table 2

The performance for normal GCN without edge information and GCN with edge information in the GCN message passing process.a

Model Model depth
MAE (s) ↓ MedAE (s) ↓ MAPE ↓ 𝑅2 ↑ MSE ↓

Mean Std Mean Std Mean Std Mean Std Mean Std

normal_GCN
3 35.30 0.30 18.45 0.22 0.044 0.000 0.861 0.001 4,238 28

5 31.77 0.19 15.97 0.28 0.040 0.000 0.874 0.001 3,844 23

GCN_edge
3 30.97 0.07 16.14 0.21 0.039 0.000 0.882 0.001 3,583 18

5 30.12 0.26 15.51 0.38 0.038 0.000 0.885 0.000 3,493 11

a To calculate the mean and standard deviation values, each experiment was repeated three times with three different seeds.
3.2. Effect of edge information

We introduced the edge information to the developed model, and to 
compare the model performance, we also implemented the normal GCN 
model. The difference was that whether the edge information was con-

ducted in the message passing process (Fig. 2). Kensert et al. showed 
that the GCN without edge information outperformed the RGCN with 
edge information, they did not conduct whether the edge information 
could improve the GCN model’s performance [29]. Our study compre-

hensively compared the GCN model with edge information and that 
without information. As shown in Table 2, the mean MAE decreased 
from 35.30 s to 30.97, for the 3-layers model, and decreased from 31.77 
s to 30.12 s for the 5-layers model, respectively. The GCN model benefit 
from the inclusion of edge information.

3.3. Increasing the model depth

As described before, recent researches also confirm that deep GNNs 
are indeed beneficial to the right level of task scale and/or complex-

ity [32–34]. Therefore, we then explored whether deep GCN can im-

prove the prediction accuracy of small-molecule retention time.

When increasing the model depth, GCN often suffers from over-

smoothing issues [46]. One straightforward way to alleviate the over-

smoothing problem for GCN is residual connection [31,52]. Therefore, 
we implemented two versions of models, GCN_edge (model without 
residual connection) and GCN_edge_residual (model with residual con-

nection), respectively. As shown in Table 3 and Table S4, without resid-

ual connection implemented, the MAEs of models with 3, 5, 8, and 16 
hidden GCN layers were 30.97, 30.12, 31.73, and 41.26 s, respectively. 
For the models with residual connection, the MAEs of models with 3, 
5, 8, 16 hidden GCN layers were 28.70, 28.03, 27.44, and 27.51 s, re-

spectively. On one hand, the residual connection significantly improved 
4

the model performance when the models have the same depth. On the 
other hand, with the help of the residual connection, the model per-

formance became better when increasing the model depth from 3 to 8, 
while the performance of 16-layers model was a little worse that the 
of 8-layers model. The previously published state-of-the-art mode, GCN 
model [29], did not implement the residual connection and it has a rel-

atively shallow model depth (5 GCN layers). This study showed that, 
except for the edge information, the residual connection and model 
depth contribute to the increased model performance. Overall, GCN 
benefits from residual connection.

3.4. Different readout module

To explore the influences of the readout process, this study further 
performed an analysis on different readout modules. Average pooling 
was evaluated. In addition, inspired by Xiong et al. [47], we adopted 
a readout module in DeepGCN-RT, which includes the attention-based 
readout and the GRU recurrent network unit. This readout module per-

formed well in terms of information retention and filtering [53].

The results are listed in the Table 3. For the models with aver-

age pooling (GCN_edge_residual), the MAEs of 3, 5, 8, and 16 hidden 
GCN layers were 28.70, 28.03, 27.44, and 27.51 s, respectively, while 
DeepGCN-RT, which used the attention-based pooling, have MAEs of 
27.97, 27.00, 26.61, 26.55 s, respectively. In general, the performance 
of graph attention-based readout is better than average pooling.

3.5. Ablation study

To illustrate the effectiveness of residual connection, edge informa-

tion, and graph attention mechanism-based readout of DeepGCN-RT in 
the retention time prediction, we perform an ablation study for the 
DeepGCN-RT model. The results are listed in Fig. 4 and Table S5. The 
residual connection has a critical effect on the model performance. 
Residual connection is critical to build deeper models, especially for 

pushing the model depth to 16 layers.



Journal of Chromatography A 1711 (2023) 464439Q. Kang, P. Fang, S. Zhang et al.

Table 3

Performance comparison for different model architectures.a

Model Layers
MAE (s) ↓ MedAE (s) ↓ MAPE ↓ 𝑅2 ↑ MSE ↓

Mean Std Mean Std Mean Std Mean Std Mean Std

GCN_edgeb

3 30.97 0.07 16.14 0.21 0.039 0.000 0.882 0.001 3,583 18

5 30.12 0.26 15.51 0.38 0.038 0.000 0.885 0.000 3,493 11

8 31.73 0.92 17.20 1.32 0.039 0.001 0.882 0.001 3,595 43

16 41.26 1.78 27.43 2.22 0.052 0.003 0.858 0.005 4,342 168

GCN_edge_residual(average pooling)c

3 28.70 0.16 14.20 0.24 0.036 0.000 0.888 0.001 3,421 29

5 28.03 0.10 13.60 0.06 0.035 0.000 0.889 0.001 3,391 23

8 27.44 0.07 13.05 0.03 0.034 0.000 0.890 0.001 3,340 17

16 27.51 0.17 12.86 0.07 0.035 0.000 0.887 0.001 3,434 44

DeepGCN-RTd

3 27.97 0.20 14.01 0.07 0.035 0.000 0.892 0.002 3,303 55

5 27.00 0.19 12.91 0.18 0.034 0.000 0.892 0.001 3,288 33

8 26.61 0.09 12.44 0.05 0.034 0.000 0.892 0.001 3,286 31

16 26.55 0.17 12.38 0.12 0.033 0.000 0.892 0.001 3,299 45

a To calculate the mean and standard deviation values, each experiment was repeated three times with three different seeds.
b Edge information and average pooling are used for GCN_edge.
c Edge information and residual connection, average pooling are used for GCN_edge_residual.
d Edge information, residual connection, and attention-based readout module are used for DeepGCN-RT, and the details could be found in the Method Section.

Fig. 4. Ablation study for DeepGCN-RT.
The graph-attention based readout has a second important effect 
on the model performance. The readout module in DeepGCN-RT used 
a supernode that connects all nodes in the atom, and it performed 
the readout process using the GRU recurrent network unit, which per-

formed well in terms of information retention and filtering [47]. The 
performance of average pooling was better than sum pooling, while 
both were worse than the graph attention mechanism-based readout.

The performance of the model without edge information was a little 
worse than that of the model with edge information (Fig. 4). The edge 
information has a very important effect at the model depth of 3, and 
when we push the model depth to 16 layers, the effects of edge infor-

mation seem to be decreasing. Overall, the improvement effects for the 
edge information are still present for even deeper networks, and the ef-

fects of edge information seem to be decreasing for deeper networks. In 
general, more information is conducive to the model’s performance.

In addition, to further analyse the effects of model depth, we conduct 
a complete analysis between the model performance and the number of 
hidden layers. As shown in Fig. 5 and Table S6, the training loss is 
continually decreasing when increasing the model depth. The valida-

tion loss is decreasing fast from 3 hidden layers to 9 hidden layers, 
then the loss is slightly decreasing after 10 hidden layers. We also con-

ducted the performance comparison with newer GNN models, such as 
Graph Attention Network (GAT) [54,55], and Graph Isomorphism Net-

work (GIN) [56]. The results are shown in Table S7. The best model 
5

is GIN accompanied with the attention-based readout, which has vali-
Fig. 5. The performance of model with different depth.

dation MAE of 27.8 s, and its test MAE is 27.4 s. The GIN model has 
a competitive performance compared to our DeepGCN-RT (with a test 
MAE of 26.55 s).

Furthermore, we tried to analyze the importance of different fea-
tures and their contribution to the model performance using explainable 
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Table 4

Performance of DeepGCN-RT on different chromatographic datasets using transfer learning.

MAE (s) ↓ MedAE (s) ↓

Data set DeepGNN-RT-

TL

DNNpwa-TLa GNN-RT-TLa Reduction (%) DeepGNN-RT-

TL

DNNpwa-TLa GNN-RT-TLa Reduction (%)

Eawag_XBridgeC18 45.97 89.26 112.78 49% 29.59 68.56 83.79 57%

FEM_lipids 74.48 89.32 128.25 17% 32.64 63.79 79.49 49%

FEM_long 110.89 161.58 235.01 31% 55.35 72.43 94.66 24%

IPB_Halle 21.20 28.85 29.76 27% 14.13 15.98 19.25 12%

LIFE_new 18.13 27.53 29.38 34% 9.89 15 15.16 34%

LIFE_old 12.07 15.11 17.1 20% 7.28 10.67 12.88 32%

UniToyama_Atlantis 50.03 72.3 127.52 31% 27.52 39.19 99.61 30%

Mean - - - 30% - - - 34%

a The results of DNNpwa-TL and GNN-RT-TL were adopted from Ju et al. [26] and Yang et al. [28], respectively.
artificial intelligence methods. We performed the ablation study for all 
kinds of features (including 20 kinds of node features and 5 kinds of 
edge features). We excluded one kind of feature one time, and summa-

rized the model performances in Figure S4 and Table S11. It seems that 
the most important atom feature is the Cahn-Ingold-Prelog(CIP) code (R 
or S) of the atom, which affects the model performance critically. The 
second and third important atom features are the formal charge, and 
the tspa contrib (the contribution of each atom to the TPSA). For the 
bond features, the is_in_ring, the edge_bond_type, and the is_conjugated 
are the most important three kinds of features.

3.6. Different chromatographic systems

In real-world applications, the chromatographic conditions typically 
differ between different groups or studies. The retention time predic-

tion model built on one dataset can not be directly applied to another 
dataset obtained under a different chromatographic condition. There-

fore, transfer learning was adopted to utilize the prior knowledge that 
DeepGCN-RT had learned from the SMRT dataset. In this study, trans-

fer learning was applied to nine datasets obtained from PedRet [41] to 
predict the retention times of small molecules. There were seven RPLC 
datasets, namely Eawag_XBridgeC18, FEM_lipids, FEM_long, IPB_Halle, 
LIFE_new, LIFE_old, and UniToyama_Atlantis. To evaluate the transfer 
learning ability of DeepGCN-RT, 10 rounds of 10-fold cross-validation 
were performed. Each fold of fitting was performed on a training set 
consisting of 90% of the total training set selected at random, with the 
remaining 10% being used as a hold-out set for validation. Ten differ-

ent seeds were used for 10 rounds, and the results are summarized in 
Table 4 and Fig. 6. DeepGCN-RT outperformed the other methods on all 
datasets, with the lowest MAEs of 45.97, 74.48, 110.89, 77.70, 21.20, 
18.13, 12.07, and 50.03 s, respectively, on the seven datasets listed 
above. The MAEs decreased by 49%, 17%, 31%, 27%, 34%, 20%, and 
31%, respectively, in comparison to the previous best model DNNpwa.

In addition, to evaluate the performance of transfer learning, we 
compared the results from transfer learning with those for trained 
from scratch. It means that we trained model from scratch for the 
seven datasets obtained from PedRet, and we did not use the model 
weights of DeepGCN-RT obtained from SMRT dataset. The results 
are showed in Table 5. The MAEs from the transfer learning mod-

els were 45.97, 74.48, 110.89, 21.20, 18.13, 12.07, and 50.03 s, 
for Eawag_XBridgeC18, FEM_lipids, FEM_long, IPB_Halle, LIFE_new, 
LIFE_old, and UniToyama_Atlantis, respectively, while these from mod-

els trained from scratch were 59.60, 79.81, 152.32, 24.09, 18.11, 12.74, 
and 87.34 s, respectively. The results from the transfer learning outper-

formed those trained from scratch, while these two methods have close 
results for one dataset (LIFE_new). For all the datasets, the results from 
the transfer learning matched or exceeded those trained from scratch. 
We also performed de-duplication between SMRT and seven datasets 
for transfer learning. We compared the Canonical SMILES obtained by 
RDKit, and it turned out that the seven transfer learning datasets nearly 
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have no duplicate molecules (Table S12).
Table 5

Performance of transfer learning and these of training from stretch.

MAE (s)↓ MedAE (s)↓ MAPE ↓ R2 ↑

Transfer learning

Eawag_XBridgeC18 45.97 29.59 0.15 0.90

FEM_lipids 74.48 32.64 0.30 0.82

FEM_long 110.89 55.35 0.27 0.95

IPB_Halle 21.20 14.13 0.28 0.91

LIFE_new 18.13 9.89 0.28 0.87

LIFE_old 12.07 7.28 0.17 0.89

UniToyama_Atlantis 50.03 27.52 0.07 0.90

Trained from scratch

Eawag_XBridgeC18 59.60 39.06 0.17 0.86

FEM_lipids 79.81 46.24 0.22 0.81

FEM_long 152.32 73.17 0.28 0.92

IPB_Halle 24.09 16.42 0.19 0.91

LIFE_new 18.11 9.12 0.23 0.86

LIFE_old 12.74 7.62 0.17 0.88

UniToyama_Atlantis 87.34 48.83 0.12 0.65

3.7. DeepGCN-RT in small-molecule identification

To evaluate the molecule identification performance of DeepGCN-

RT, we annotated the small molecules in the RIKEN-PlaSMA dataset 
from MoNA [57] using MSFinder [58] and DeepGCN-RT. The corre-

sponding transfer learning model, denoted as DeepGCN-RT-TL, was 
built by fine-tuning the DeepGCN-RT using the retention times from 
the RIKEN-PlaSMA dataset. The RIKEN-PlaSMA dataset contained 434 
molecules, and 100 of them were reserved as the test set for molecule 
identification. Totally 343 molecules were used in the fine-tuning pro-

cess.

Then 100 molecules reserved for structural identification were anno-

tated by MSFinder and DeepGCN-RT-TL-assisted MSFinder, separately. 
The difference between these two methods is whether we use the fine-

tuned model to filter the candidate structures. For the MSFinder identi-

fication, the search methods were formula prediction and structure elu-

cidation accompanied by in silico fragmentation. The mass tolerance for 
MS1 is ±0.001 Da, and LEWIS and SENIOR checks [59] were performed 
for the calculated formulas. The formulas were searched through the 
structure databases to get possible candidates. The databases included 
HMDB, DrugBank, PubChem, and others (the full list was shown in the 
Supporting Information), and the maximum of candidate structures was 
100. We used RDKit to calculate the canonical SMILES, and strictly 
compare them to the “true canonical SMILES” labeled in the RIKEN-

PlaSMA dataset. It should be noted that, that we only used the formula 
prediction and structure elucidation accompanied by in silico fragmen-

tation, and we did not search any online MS/MS database. More auto-

mated MS/MS searching tool could be developed, and well-structured 

databases are necessary in further research.
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Fig. 6. Results of 10 rounds of 10-fold cross validation of DeepGCN-RT, DNNpwa, and GNN-RT (lower is better, and the results of DNNpwa-TL and GNN-RT-TL were 
abstracted from Ju et al. [26] and Yang et al. [28], respectively).
For the DeepGCN-RT-assisted method, after fine-tuning, the MAEs 
of DeepGCN-RT-TL for the training and validation sets were 9.04 s and 
22.23 s, respectively (Table S4). Therefore, 66.69 s, a filtering thresh-

old of 3 times the validating MAE, was used to filter the candidate 
structures. Overall, the mean number of the candidate structures in the 
annotation process for the test set reduced from 50 to 35, which de-

creased by 30% (Fig. 7), after we used the retention time information 
predicted by DeepGCN-RT-TL. In all cases, the application of DeepGCN-

RT-TL largely reduced the number of possible candidate structures, 
demonstrating the effectiveness and efficiency of molecular identifica-

tion based on retention time. In addition to the decreased number of 
candidates, the addition of retention time also improved the prediction 
accuracy of the top-𝑘 (Fig. 7). For MSFinder identification, the top-

1, top-2, top-5, top-10, and top-20 accuracies were 23%, 28%, 30%, 
31%, 33%, and 33%, respectively, while these were 26%, 29%, 31%, 
32%, 33%, and 33% for DeepGCN-RT-TL assisted identification (Table 
S5). These results showed the effectiveness of DeepGCN-RT in structural 
identification.

In the meanwhile, we must point out that we did not adjust dif-

ferent hyper-parameters during the identification process. These hyper-

parameters should be regarded as very important in real-world applica-

tions. Therefore, we have open-sourced all the model weights, and we 
hope these models could facilitate further structural identification in 
MS-based analysis. We also perform de-duplication between SMRT and 
RIKEN-PlaSMA dataset. For the RIKEN-PlaSMA dataset, the train split 
has 14 duplicate molecules, and the test split has 1 duplicate molecule. 
The training split and test split have 334 and 100 molecules, respec-
7

tively. After de-duplication, the training split and test split have 320 
and 99 molecules, respectively. The test MAE of the origin dataset is 
21.45 s, while that of the dataset with de-duplication is 24.43 s. The 
model performances are summarized in Table S13. If the transferring 
datasets, especially the training set, have been used in pre-training, it 
appears that this could result in overly optimistic outcomes. Additional 
investigation is necessary to analyze the duplication of molecules in 
pre-training and transfer learning.

4. Conclusion

Prediction of chromatographic retention time has become an active 
research field as the retention time provides meaningful information 
orthogonal to that contained in MS/MS. In this study, we developed 
a deep GCN model named DeepGCN-RT, which outperformed several 
previous state-of-the-art models in predicting the retention times of 
the SMRT dataset. Furthermore, the DeepGCN-RT model was applied 
to other chromatographic datasets including RPLC and HILIC. It turned 
out that DeepGCN-RT also greatly reduced the predictive errors of these 
datasets. This study demonstrated the competitive prediction ability of 
deep GNN architecture, and the developed model could facilitate fur-

ther structural identification in MS-based molecular structure analysis.

5. Note

The source code of the DeepGCN-RT is publicly available at https://
github .com /kangqiyue /DeepGCN -RT.

https://github.com/kangqiyue/DeepGCN-RT
https://github.com/kangqiyue/DeepGCN-RT
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Fig. 7. Identification results of RIKEN-Plasma using MSFinder and DeepGCN-RT-TL (Only formula prediction and structure elucidation accompanied by in silico 
fragmentation were used in the identification process).
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