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Deep neural networks need to make robust inference in the presence of occlusion, background clutter, pose and
viewpoint variations -to name a few- when the task of person re-identification is considered. Attention mecha-
nisms have recently proven to be successful in handling the aforementioned challenges to some degree. However
previous designs fail to capture inherent inter-dependencies between the attended features; leading to restricted
interactions between the attention blocks. In this paper, we propose a new attention module called Cross-
Correlated Attention (CCA); which aims to overcome such limitations by maximizing the information gain be-
tween different attended regions. Moreover, we also propose a novel deep network that makes use of different
attention mechanisms to learn robust and discriminative representations of person images. The resulting
model is called the Cross-Correlated Attention Network (CCAN). Extensive experiments demonstrate that the
CCAN comfortably outperforms current state-of-the-art algorithms by a tangible margin.
Modeling the inherentspatial relations between different attended regions within the deep architecture. Joint
end-to-end cross correlated attention and representational learning. State-of-the-art results in terms of mAP
and Rank-1 accuracies across several challenging datasets.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we propose a Cross-Correlated Attention Network
(CCAN) to jointly learn a holistic attention selection mechanism along
with discriminative feature representations for person Re-IDentification
(Re-ID). To this end, we make use of complementary attentional infor-
mation along a global and a local branch (or feature extractor), in
order to localize and focus on the discriminative regions of the input
image.

Person Re-ID refers to the task of judging whether two images,
depicting people, belong to the same individual or not. In general, the
two images are obtained from two distinct cameras without any over-
lapping views. More specifically, given a query image containing the
person of interest (or probe), Re-ID aims to find all the images that con-
tain the same identity (id), as that of the query image, from a large gal-
lery set [1].

Any robust Re-ID algorithm is required to address the following
challenges: (1) viewpoint variations in visual appearance and
anu.edu.au (P. Fang),
on@data61.csiro.au
environmental conditions due to different non-overlapping camera
views, (2) significant pose changes for the same probe across time,
space and camera views, (3) background clutter and occlusions, (4) dif-
ferent individuals may have similar appearance across different cam-
eras or vice versa, (5) low resolution of the images limiting the use of
face based biometric systems [2]. All these factors lead to significant vi-
sual deformations across themultiple camera views for the sameperson
of interest.

In order to overcome these challenges, most of the early works fo-
cused on (1) designing discriminative hand-engineered feature repre-
sentations which are invariant to lighting, pose and viewpoint
changes, and occlusion or clutter [1,3]; (2) learning a robust distance
metric for similarity measurement such that the embedded feature
vectors belonging to the same class are closer to each other compared
to the ones from different classes [4,5].

With the success of Deep Learning (DL) algorithms [6] across a large
number of tasks in computer vision, recent deep Re-ID algorithms com-
bine both the aforementioned aspects together into a unified end-to-
end framework.While somedeep algorithms address Re-ID bydevelop-
ing distinct global feature extraction units [7,8], others use a hybrid
model which holistically combines the global and local features for an
improved performance [9,10]. Body-part detectors have been pre-
dominantly used to extract local features that are distinct, discrimina-
tive and compatible with global features [11,12]. Similarly, pose estima-
tion, correction and normalization networks [13,14,15] have also shown
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great potential with, or without, part detectors in handling misalign-
ment and viewpoint variations prevalent in the Re-ID datasets. The
use of such special purpose auxiliary information tend to improve
upon the methods it is applied to.

Attention based person Re-IDmodels have also been showing prom-
ising results as of late. Attention, as the name suggests, is comprised of
two basic conceptual functionalities: “where to look” and “how carefully
to look”. Hard-attention often uses a window produced by, e.g, a Spatial
Transformer Network (STN) [16] that models the former with a binary
mask over the input features, whereas soft-attention simulates the latter
by importance weighting of the input features [17].

Both these attention based learning approaches have been success-
fully integrated when addressing the person Re-ID task [11,12]. How-
ever, these models do not capture spatial inter-dependencies (i.e, self-
attention) within the input features, thereby failing to recognize and
perceive spatially distant, yet visually similar regions. They also do not
capture (or improve) any inter- (or cross-correlated) dependencies be-
tween the separately attended regions, thus failing to boost the overall
Signal-to-Noise Ratio (SNR) in the learnt feature maps. Moreover,
convolutional based soft-attention blocks are not able to capture the in-
herent contextual information that exist in the input features.

To address the aforementioned drawbacks, we design the CCAN, a
novel yet intuitive Cross-Correlated Attention based deep network.
CCAN consists of a novel attentionmodule which aims to exploit and ex-
plore the correlation between different regions at various levels of a
deep model. It also benefits from a top-down interaction scheme be-
tween the global and local feature extractors through the different at-
tention modules to automatically focus and extract distinct regions in
the input image for enhanced feature representation learning.

The major contributions of our work are as follows:

• A novel Cross-Correlated Attention (CCA) module to model the inher-
ent spatial relations between different attended regions within the
deep architecture.

• A novel deep architecture for joint end-to-end cross correlated atten-
tion and representational learning.

• State-of-the-art results in terms of mAP and Rank-1 accuracies across
several challenging datasets such as Market-1501 [18] and
DukeMTMC-reID [19], CUHK03 [8] and MSMT17 [20].

2. Related Work

Much of the earlier work in person Re-ID was focused on hand-
engineered feature representations [21,22,23,24,1] or learning a robust
metric [25,5,26] to overcome the associated challenges. Recent studies
employ Deep Neural Networks (DNNs) for joint learning of the discrim-
inative features and similarity measures in end-to-end frameworks [7,
27]. Since we are chiefly interested in attention methods for person
Re-ID in this paper, we will not cover part/pose-based solutions here
and refer interested readers to [13,14,28].

To address the viewpoint/pose variations and misalignment issues
commonly present in a Re-ID system, a profound idea is to benefit
from the use of attention techniques in DNNs [11,12,29–33,68]. Li
et al. [11] used a Spatial Transformer Network (STN) [16] as a basis for
creating a form of hard-attention to search and focus on the discrimina-
tive regions in the image, subject to a pre-defined spatial constraint.
Zhao et al. [29] designed a novel hard-attention module (with compo-
nents similar to STN) and integrated it into a CNN. This helped to
focus on more discriminative regions. Subsequently, by extracting and
processing features from the attention regions, improvements to the
overall performancewere observed. AANet [33] proposed a Part Feature
Network by cropping body parts according to the location of the peak
activation in the feature maps. Arguably, hard-attention modules fail
to capture the coherence between image pixels within the attention
windows due to their inflexible modelling nature. The Comparative
Attention Network (CAN) [31] employs LSTMs to perform soft-
attention at a holistic scale and identify discriminative regions in Re-
ID images. Liu et al. [30] proposed HydraPlus-Net (HPN) which utilizes
soft-attention across multiple scales and levels to learn discriminative
representations. Dual ATtention Matching networks (DuATMs) [34]
use spatial bi-directional attentions along sequence matching to learn
context-aware feature representations. Wang et al. proposed Mancs
[32] and designed a soft-attentional block and a novel curriculum sam-
pling method to learn focused attention masks. In contrast to the afore-
mentioned algorithms, HA-CNN [12] uses both hard and soft attention
modules to efficiently learn where to look and how carefully to look
simultaneously.

Recently, Zhou et al. [35] propose a novel attention regularizer along
with a novel triplet loss which consistently learns correlated attention
masks from low, mid and higher level feature maps within an interac-
tive loop. DGNet [36] proposed coupling person re-id learning and
image generation in a unified joint learning framework such that the
re-id learning stage can benefit from the generated data with an inher-
ent feedback loop to learning a superior embedding space. CAMA [37]
enhances learning of traditional global representations for person Re-
ID by learning class activation maps to discover discriminative and dis-
tinct visual features. CASN [38] designed a new siamese framework in
order to learn discriminative attention masks and enforce attention
consistency among images of the same person. Likewise, OSNet [39] de-
signed a new aggregation gate that dynamically fuses features at multi-
ple different scales with channel-wise attentional weights. MHAN [40]
proposed the High-Order Attention (HOA) to integrate complex and
higher order statistical information in learning an attention mask so as
to capture and distinguish subtle differences between the pedestrian
and the background.

In contrast to the aforementioned techniques, CCAN makes use of a
novel, yet intuitive, cross-correlated attention module which discovers
and exploits inter-correlated spatial dependencies in the learnt feature
maps. It then propagates these learnt dependencies along the feature
extraction units to inherently learn robust and discriminative features
and attention maps; thereby improving the overall information gain in
a data-driven fashion.

3. Cross-Correlated Attention Networks

Let xi∈X be an image, with X⊂ℝH�W�C denoting the image-space,
whereH,W and C indicate its rows, columns and channels, respectively.
In person Re-ID, we are providedwithN pairs of the form {xi,yi}i=1

N with
yi ∈ {1,⋯,K} representing the identity of the person depicted in xi. The
aim, here, is to learn a generic non-linear mapping Ψ : X→ℋ from
the image space X onto a latent feature spaceℋ such that, inℋ, em-
beddings coming from the same identity are closer to each other than
those of different identities. We achieve this by exploiting the comple-
mentary nature of global and local information in Re-ID images using
a combination of two different, and complementary, learnable attention
modules. We first provide a detailed overview of the attentionmodules
(§3.1); followed by the overall structure of CCAN (§3.2).

3.1. Attention Layers

In CCAN,we introduce a variation of self-attention named Cross-Cor-
related Attention. The Cross-Correlated Attention mechanism aims to
capture, exploit and boost spatial inter-dependencies (or cross-
correlation) between different selected regions.

The Cross-Correlated Attention (CC-Attention or CCA) module
which aims to model the cross-correlation (or inter-dependencies) be-
tween different feature maps as a means to construct the attention
mask. Each CCAmodule accepts two inputs and calculates the attention
as a weighted combination of the input feature maps (see Fig. 1 for a
conceptual diagram). This, as will be shown empirically, captures the



Fig. 1. The architecture of Cross-Correlated Attention (CC-Attention) used in our model
(blue blocks in Fig. 3). CC-Attention is able to find correlated spatial locations in its two
different input feature maps, which are further processed by the subsequent processing
layers for discriminative feature learning.

Fig. 2. Schematic of the Non-Local Self-Attention module as defined in [41].
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inter-dependencies between the spatial regions in various featuremaps
with only a small computational overhead.

The CCA block works with the so-called positional matrices q, q
′ ∈ ℝMN×C. In our application, the positional matrices are constructed
from two featuremaps Q, Q′ ∈ℝM×N×C via reshaping through spacial di-
mension,i.eℝC∍qi=Q(m,n, :) ∀i∈{1,…,MN},∀m∈{1,…,M},∀n∈{1,…,
N}. The matrices q and q′ are then transformed into two feature spaces
using independent non-linear mappings g and f, respectively. The non-
linearmappings are realized through f(qi′)=ϕ(qi′Wf) andg(qi)=ϕ(qi
Wg), where Wf, Wg ∈ ℝK×C, where the non-linearity ϕ : ℝ → ℝ acts
element-wise on f and g. In our experiments, we choose ϕ(x) = ReLU
(x) =max (0,x). These two spaces are then used to calculate a primary
attention map between the inputs at the different spatial locations as
follows:

A ¼ ϕ A0;A0Τ
h i

Wα
� �

; ð1Þ

where A′ = g(q)f(q′)Τ, [., .] denotes the concatenation operation along
the width. Furthermore, α is a linear layer with weightWα ∈ ℝ2MN×MN.
[A]ij is ameasure of spatial dependencies between the ith and the jth spa-
tial locations of the positionalmatrices q and q′ respectively; thereby re-
alizing a measure of cross-correlation between them. The symmetric
operation described above guides the CCAmodule to focus on the corre-
lated positions in both the q and q′, which is processed by the subse-
quent layers of the network. The resultant map A is then used to
generate y ∈ ℝMN×K for input q as follows:

yi ¼
1

MN

X
j¼1

MN

A½ �ij⊙ϕ h q j

� �� �� �
;∀i ¼ 1:…MN; ð2Þ

where⊙ is Hadamard (element-wise) product, yi is a weighted combi-
nation of the responses at all positions denoted by j, and h is also a non-
linear layer with its weightWh ∈ ℝK×C such that h(qi) = ϕ(qi Wh). We
further pass y through a linear layer w to obtain the final output of the
CC-Attention module as follows

zi ¼ w yið Þ þ qi; ∀i ¼ 1;…;mn ð3Þ

with z = [z1;⋯;zmn] ∈ ℝMN×C and zi ∈ ℝC, and w(yi) = ϕ(yi Ww) such
that Ww ∈ ℝC×K. The output z is reshaped to ℝM×N×C to match that of
input Q. In all our experiments, we have fixed the value of K to be C/8.

An intuitive way of thinking about the CCA module is to see g and f
as non-linear signatures of elements q and q′. The cross-correlation be-
tween the non-linear signatures acts as a gate and controls the informa-
tion flow based on inter-correlation for generating the mask. The
information, here, is encoded through h. The result is further pruned
byw and generates the attention map in an additive form. The additive
form resembles the residual computingwhich is proven to be beneficial
in training deep architectures.

Remark 1. In the CCA module, we have introduced a symmetric cross-
correlation operation between its input feature maps q and q′ to generate
the attention map A (see Eq. 1). It thereby encapsulates symmetrical
inter-dependencies between its inputs. The standard cross-correlation op-
eration does not take into account such symmetric relationships between
the inputs. We believe that this subtle change makes CCA attend to highly
correlated regions in both of its input feature maps.

Remark 2. When Q = Q′, the overall structure represents a form of
Symmetric Self-Attention (SS-Attention or SSA) that aims to model highly
correlated regions within itself. This form of symmetric self-attention is ap-
plied in the global branch, (i.e, SS1G) which models the intra-dependencies
within the input. Further simplification of the SS-Attention module by re-
moving the Concat and “α” block leads to the Non-Local Self-Attention
module which is shown in Fig. 2. Thus we equip the traditional self-
attention module with these two important changes to model symmetric
cross-correlation attention between its two different inputs.

3.2. Structure of the CCAN

ACCAN consists of twomain branches (i.e, streams or feature extrac-
tors), namely the global,G, and the local, L, branch (see Fig. 3 for an over-
view of the architecture of CCAN). The purpose of the global branch is to
capture and encode the overall appearance of a person, while the local
branch encodes part information. The local branch, itself, has kp sub-
branches (or part-streams).

The basic building block of all branches is the Inception block of
GoogLeNet [42]. The global branchmakes use of three Inception blocks,
{IkG}k=1

3 along with a self-attention module SS1G to encode the global ap-
pearance (Ik• marks the beginning of the k-th level of processing in
CCAN). The Inception blocks in the global stream enable us to analyze
the input at various resolutions, thereby realizing a coarse to fine global
representation. The local branch, as the name implies, attends to the
local and discriminative parts of the input image. The local branch com-
prises of kp sub-branches, each intended to extract features belonging to
a distinct part in the input image. For the s-th sub-branch, we denote its
Inception blocks by Ik, sL with k ∈ {2,3} and s ∈ {1,⋯,kp} (see Fig. 3 for
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details). We emphasize that each Ik, •L is an independent module, mean-
ing that weights are not shared across the kp part-streams.

In order to feed part information into local branches,we slice the fea-
ture maps at Z1G and Z2G (i.e the input and output of I2G) into kp horizontal
equal patches independently. Thereafter, all the sliced patches are
resized to the size of their corresponding featuremaps using bilinear in-
terpolation. Moreover, each of the sub-branches consist of a cross-
correlated attention module (i.e CC2, sL )∀s ∈ {1,⋯,kp}. Every CC2, s

L calcu-
lates the cross-correlation between the sliced part patches of Z1G (after
having been passed through Ik, •L ) and Z2G in each of the sub-branches in-
dependently. This sharing of feature mapsbetween the attention mod-
ules across the global and local branch within CCAN leads to the
discovery of highly correlated regions; thereby realizing a simple but ef-
fective CCA scheme within CCAN.

The global branch is appended with a global average pooling (GAP)
layer and two fully connected (FC1G and FC2G) layers, with the output of
the FC1G realizing a d-dimensional embedding space. Similarly, the out-
puts of local sub-branches are passed through GAP layers and
concatenated to produce a 1024 × kp feature vector. This is then passed
through FC1

L to produce the d-dimensional embedding vector in the
local branch, which is further passed through FC2

L . It should be noted
that the FC2G and FC2

L realize representations suitable for classification
(i.e,ℒce

G andℒce
L ). As such, their output dimensionality is K, the number

of identities in the training set. We will discuss this in more detail later.

3.3. Loss function

Following the common practice in learning embeddings [43,44,45,
46], we make use of a combination of classification and ranking losses
(cross entropy loss with Label-Smoothing Regularization (LSR) [47]
and the semi-hard triplet loss [48,49], respectively), to jointly optimize
the global and the local branch. The overall loss is defined as follows:

ℒtot ¼ ℒG
ce þℒG

tri þℒL
ce þℒL

tri ; ð4Þ

where the subscripts ce and tri denote the cross-entropy and triplet loss
respectively. Moreover, the superscripts G and L indicate the global and
local branch. We briefly describe the semi-hard triplet mining strategy
used in our algorithm for calculating the triplet loss.

Semi-hard Triplet Mining.
In each mini-batch of N training samples, wemine ∣P ∣ triplets of the

form {(xia,xip,xin)}i=1
∣P∣ , with the constraint that (xia,xip) are in the same cat-

egory, while (xia,xin) are not. We also use the semi-hard mining strategy
[48] to generate robust triplets for training the network. More specifi-
cally, given the anchor xa and its positive example xp, we obtain the
top r semi-hard negative triplets as follows

xn ¼ x j : arg min
Dp
abD

j
a ;∀ j¼1;⋯;r

D j
a; s:t:D

j
abD

jþ1
a

8<
:

9=
; ;

where Da
j = ∥ xa − xj∥2. r is set to 10 for all the datasets. Moreover, to

avoid any degeneracy, we randomly pick v different identities and sam-
ple N/v random images from each of the selected identities to create the
mini-batch. These triplets are then used to compute the triplet embed-
ding loss:

ℒtri ¼
1

j P j
X
i¼1

jPj
∥xai −xpi ∥

2−∥xai −xni ∥
2 þ τ

� �
þ ; ð5Þ

where [y]+ = max (0,y) is the hinge loss, and τ N 0 is a user-specified
margin.

3.4. Person Re-ID by CCAN

Given a trained CCANmodel and an input image xi;we first obtain its
d dimensional global feature fiG and d dimensional local feature fiL. We
perform L2 normalization on each of them separately, and then proceed
to concatenate them to obtain the joint 2d feature vector fiA = [fiG; fiL].
Thus, given a probe image xp from one camera view and all the gallery

images fx jg from the other camera views, we obtain fpA and ff Aj g and
compute the between-camera matching distances using the Euclidean
distance. We then rank all fx jg in ascending order based on their dis-
tances given xi and use that to evaluate the identity of xp.

4. Experiments

Datasets and Evaluation Protocol In this section, we show the ef-
fectiveness of our proposed algorithm through an extensive set of ex-
periments across three well known person Re-ID datasets; (a) Market-
1501 [18], (b) DukeMTMC-reID (or DukeMTMC) [19], (c) CUHK03 [8]
and (d) MSMT [20]. Market-1501 has 751/750 train/test identity split,
and 32,668 images in total. DukeMTMC-reID has 702/702 train/test
identity split, and 36,411 images in total. CUHK03 has 14,097 images
in total. In order to make the re-identification task more challenging
on CUHK03, we use the 767/700 train/test identity split [50] instead of
the 1367/100 standard split. The train/test id split and the test protocol
are shown in Table 1. TheMSMT17 [20] dataset consists of 126,441 per-
son images from 4,101 identities, thus constituting the largest person
Re-ID dataset at present. All person images are detected using a Faster
R-CNN [51]. This dataset is collected using 15 different cameras; and



5J. Zhou et al. / Image and Vision Computing 100 (2020) 103931
the images were captured over 4 different days experiencing different
weather conditions during a month. The training set consists of 32,621
images belonging to 1,041 identities, whereas the test set contains
93,820 images belonging to the remaining 3,060 identities. The test
set is further randomly divided into 11,659 and 82,161 images for
query and gallery sets respectively. Both mean Average Precision
(mAP) and Cumulative Matching Characteristic (CMC) metrics are
used for measuring performance on these datasets.

Table 1: The details of evaluated datasets. Dis refers to the distractor
images of the DukeMTMC-reID dataset. TS, SQ,MQ and SS stand for Test
Setting, Single Query, Multiple Query and Single Shot, respectively.
Dataset
M
D
C

m
R
M

m
R
M

m
R
M

m

m
R
M

m
R
M

m
R
M

m

Images
 IDs
 Train
 Test
 TS
arket1501
 32,668
 1501
 751
 750
 SQ/MQ

ukeMTMC-reID
 36,411
 1404 + 408 dis
 702
 702
 SQ

UHK03
 14,097
 1467
 767
 700
 SS

SMT17
 126,441
 4101
 1041
 3060
 SQ
M
Table 2: Comparison results on Market-1501 [18] dataset.
Method
 SVDNet
[52]
MHAN
[40]
Dare [53]
 AOS [54]
 MLFN
[55]
SGGNN
[56]
AP
 62.1
 85.0
 69.9
 70.4
 74.3
 82.8

1
 82.3
 95.1
 86.0
 86.5
 90.0
 92.3

ethod
 IANet [57]
 PCB [28]
 MSCAN

[11]

JLML [10]
 PBR [58]
 MGCAM

[59]

AP
 83.1
 81.6
 57.5
 65.5
 76.0
 74.3

1
 94.4
 93.1
 80.3
 85.1
 90.2
 83.8

ethod
 AANet

[33]

HPN [30]
 DKPM

[60]

DuATM
[34]
Mancs
[32]
HA-CNN
[12]
AP
 83.4
 –
 75.3
 76.6
 82.3
 75.7

1
 93.9
 76.9
 90.1
 91.4
 93.1
 91.2

ethod
 CASN [38]
 CAR [35]
 OSNet

[39]

DGNet
[36]
CAMA
[37]
CCAN
(Ours)
AP
 82.8
 84.7
 84.9
 86.0
 84.5
 87.0

1
 94.4
 96.1
 94.8
 94.8
 94.7
 94.6
R
Table 3: Comparison results on DukeMTMC [19] dataset.
Method
 SVDNet
[52]
IDE [1]
 Dare [53]
 AOS [54]
 MLFN
[55]
SGGNN
[56]
AP
 56.8
 64.2
 56.3
 62.1
 62.8
 68.2

1
 76.7
 80.1
 74.5
 79.2
 81.0
 81.1

ethod
 IANet [57]
 PCB

[28]

MSCAN
[11]
JLML [10]
 PBR [58]
 MGCAM
[59]
M

AP
 73.4
 69.7
 –
 56.4
 64.2
 –
ID

1
 87.1
 83.9
 –
 73.3
 82.1
 –
A

ethod
D
P

AANet
[33]
HPN
[30]
DKPM
[60]
DuATM
[34]
Mancs
[32]
HA-CNN
[12]
AP
 74.3
 –
 63.2
 64.6
 71.8
 63.8

SV
M

1
 87.7
 –
 80.3
 81.8
 84.9
 80.5

ethod
 CASN [38]
M

CAR
[35]
OSNet
[39]
DGNet
[36]
CAMA
[37]
CCAN
(Ours)
H

AP
 73.7
 73.1
 73.5
 74.8
 72.9
 76.8
C

1
 87.7
 86.3
 88.6
 86.6
 85.8
 87.2
R
O
C

2 We report our results in bold, while we use red to report the best previous results ob-
tained so far.
4.1. Implementation

Our CCAN model is implemented in PyTorch [61]. We use
GoogLeNet-V1 [42] with Batch Normalization [62] pretrained on
Imagenet [63] as our backbone architecture. The dimensionality of the
output feature maps of the global branch (i.e, I1G, I2G and I3G) is fixed to
480, 832, and 1024 respectively. Similarly, in the local branch, the di-
mensionality of the output feature maps of I2, sL

and I3, s
L is set to 832,

and 1024 for every s respectively. The embedding dimension d and
the number of local parts (i.e kp) are set to 1024 and 4 across all the
four datasets. None of the Inception and FC layers share weights be-
tween each other. The ADAM optimizer [64] is used to train the
model, with the two moment terms (β1, β2), and the weight decay set
to (0.9, 0.99) and 1 × 10−4, respectively. The learning rate is initially
set to 5 × 10−4 for Market-1501 and DukeMTMC-reID; and 1 × 10−3

for CUHK03 in both the labeled and detected settings; which is fixed
for the first 150 epochs and decayed by a factor of 0.1 after every 50
epochs thereafter. The batch size is set to 64 of 16 identities with 4 im-
ages per identity in all the datasets. The smoothing parameter ε of LSR is
0.1. Themargin τ for the triplet loss (Refer to Eq. 5) is set to 1 forMarket-
1501 and DukeMTMC-reID, and 1.5 for CUHK03 in both the dataset set-
tings. The training images are first resized to 288 × 144 and then ran-
domly cropped to 256 × 128, followed by a random horizontal flip.
Following the protocol of [32], we apply random erasing [65] after the
50th epoch. However, during the test phase, the images are resized to
256 × 128 without any such data-augmentation techniques. We report
the results after 200 epochs of training.

4.2. Comparison to State-of-the-Art Methods2

Evaluation on Market-1501.
We have evaluated against a number of recently proposed methods

with, orwithout, the use of attentionmodules. Table 2 clearly shows the
superior performance of CCAN against all the other methods in terms of
mAP and Rank-1 accuracies on the Market-1501 dataset. More specifi-
cally, CCAN improves over the current state-of-the-art AANet by a
prominent margin in the single query setting. We also outperform
hard and soft attention based HA-CNN by 11.3/3.4% with respect to
mAP and Rank-1 respectively in the single query setting.

Evaluation on DukeMTMC-reID.
We further evaluated our proposed CCAN on the DukeMTMC-reID

[19] dataset. More variations in resolution and viewpoints due to
wider camera views, and more complex environmental layout make
DukeMTMC-reID more challenging compared to the Market-1501
dataset for the task of Re-ID. Table 3 shows that CCAN again outper-
forms almost all the baseline algorithms, except AANet in terms of
Rank-1. However, we achieve higher mAP by a significant margin. We
also outperform hard and soft attention based HA-CNN by 13.0/6.7%
with respect to mAP and Rank-1 respectively.

Table 4: Comparison results on CUHK03 dataset in both the Labeled
and the Detected settings.
Labeled
 Detected
Measure (%)
 mAP
 R1
 mAP
 R1
LFN [55]
 49.2
 54.7
 47.8
 52.8

E [1]
 48.5
 52.9
 46.3
 50.4

OS [54]
 –
 –
 47.1
 43.4

are (De) [53]
 52.2
 56.4
 50.1
 54.3

CB [28]
 56.8
 61.9
 54.4
 60.6

DNet [52]
 –
 –
 37.3
 41.5

GCAM[59]
 50.2
 50.1
 46.9
 46.7

ancs[32]
 63.9
 69.0
 60.5
 65.5

A-CNN[12]
 41.0
 44.4
 38.6
 41.7

AMA [37]
 –
 –
 64.2
 66.6

SNet [39]
 –
 –
 67.8
 72.3

ASN [38]
 68.0
 73.7
 64.4
 71.5

CAN (Ours)
 72.9
 75.2
 70.7
 73.0
C
Evaluation on CUHK03.
We have also evaluated CCAN on both the manually labeled and de-

tectedperson bounding boxes versions of CUHK03. The 767/700 split re-
sults in a small training set with only 7365 images against 12,936/
16,522 training images in Market-1501/DukeMTMC-reID datasets re-
spectively. Evenwith such a constrained training setting, Table 4 clearly
shows that notable improvement for CCAN against the baseline
methods, including the current state-of-the-art Mancs, in both the la-
beled and detected settings. Furthermore, we also outperform HA-
CNN by 31.9/30.8% and 32.1/31.3% in terms of mAP and Rank-1 in
both the settings respectively.



6 J. Zhou et al. / Image and Vision Computing 100 (2020) 103931
Evaluation on MSMT17.
Table 5 shows the result of our proposed CCAN when trained and

evaluated on the new challenging MSMT17 [20] dataset. As can be
seen, CCAN achieves a significant performance gain with regard to
mAP and Rank-1 over all the baseline algorithms. Specifically, CCAN
outperforms the current state-of-the-art algorithm on MSMT, i.e. Glad
[66], by 19.6/14.9% in terms of mAP and Rank-1 respectively.

Table 5: Comparison results on MSMT17 dataset.
F
Q

Model
G
P
G
P
O
IA
D

ig. 4. Ablation study of the
uery setting.
mAP
(a) dimensionality
R-1
of the embeddin
R-5
g space (i.e. d) and
R-10
LNet [42]
 23.0
 47.6
 65.0
 71.8

DC [67]
 29.7
 58.0
 73.6
 79.4

lad [66]
 34.0
 61.4
 76.8
 81.6

CB [28]
 40.4
 68.2
 –
 –

SNet [39]
 52.9
 78.7
 –
 –

Net [57]
 46.8
 75.5
 –
 –

GNet [36]
 52.3
 77.2
 –
 –

CAN (Ours)
 53.6
 76.3
 86.9
 90.2
C
These results, on all the four challenging datasets mentioned above,
clearly demonstrate and validate our proposed approach of cross-
correlation based joint attention and discriminative feature learning
for person Re-ID. CCAN outperforms all the current methods that rely
only on hard, soft, or a combination of these two types of attention.
5. Ablation Study

In this section, we undertake a detailed study of the various aspects
of our proposed CCAN framework.
Se
m

5.1. Dimensionality of the embedding space

We first evaluate CCAN for different values of d on the Market-1501
[18] dataset. As observed in Fig. 4(a), both mAP and R1 continue to in-
crease as d is increased from 128 to 1024, with the highest values ob-
tained when d is set to 1024. Based on this experimental study, we
decided to choose 1024 as the embedding dimension d for all the exper-
iments. It is to be noted that evenwith a smaller d (such as 256), we still
outperform all baseline algorithms (Refer to Table??). This clearly
shows that CCAN is able to learn discriminative features and achieve
state-of-the-art results for a large range of d.
(b) number
5.2. Number of body parts

We further evaluated the effect of various number of parts, i.e., kp
in CCAN. Fig. 4(b) provides a detailed overview of the following eval-
uation for five different values of kp. It can be seen that CCAN per-
forms the best when kp is set to 4, thereby suggesting that CCAN is
able to detect and focus on the 4 distinct regions of the input person
image; namely (a) head-shoulder, (b) upper-body, (c) thighs, and
(d) crus-foot. It should also be noted that even with 2 different
parts, CCAN is able to achieve competitive results against several
baseline algorithms. This indeed demonstrates that CCAN is success-
ful in exploiting the complementary nature of the learnt CCA atten-
tion modules even when lesser number of parts are specified.
Based on this, in all the subsequent experiments, we have fixed the
dimensionality of the embedding space (i.e. d) to 1024 and the num-
ber of parts (i.e. kp) to 4.

5.3. Importance of various attention modules

We perform an ablation study in order to study the importance
of various attention modules in CCAN. The results, evaluated on
Market1501 dataset [18] single query setting, are shown in
Table 6. The following critical insights are observed: (a) The per-
formance of the global branch G (Id = 1) and the local branch L
(Id = 2) by itself reads as 81.7% and 79.5% mAP respectively. (b)
Though combination of G and L helps (Id = 3), incorporating
only SS1G along G (Id = 4) leads to almost similar performance.
(c) Furthermore, Id=3 and 5 show the importance of adding a
CCA module, i.e CC2

L , along L.(d) Finally CCAN improves over
Id=6 with the addition of a SS1G along G (Refer to Fig. 3). This in-
deed verifies the joint interactive learning of the attention modules
and feature extractors to obtain a discriminative embedding space
for the person images. It is to be noted that in all our experiments,
we have kept the final structure of CCAN fixed across all the
datasets, suggesting a novel and rich architecture for the task of
Re-ID that generalises well.

Table 6: Study of the importance of various attention modules on
Market-1501 dataset.
of
Id
body parts (i
1

.e. kp). Both
2

the exper
3

iments were
4

conducted on
5

Market-1501 in t
6

tting
 G
 L
 G + L
 G+SS1G
 G + L+CC2
L
 CCAN
AP
 81.7
 79.5
 83.6
 83.3
 85.6
 87.0

1
 92.7
 92.1
 93.3
 92.9
 94.3
 94.6
R
he Single



7J. Zhou et al. / Image and Vision Computing 100 (2020) 103931
6
. Conclusions

In this paper, we propose a new attention module, called Cross-
Correlated Attention (CCA), which aims to improve the information
gain by learning to focus on the correlated regions of the input image.
We incorporate CCA into a novel deep attention architecture that we
name Cross-Correlated Attention Network (CCAN) to achieve state-of-
the-art results on three challenging datasets by utilizing the comple-
mentary nature of the attention mechanisms. In contrast to most
existing attention based Re-ID models that use constrained attention
learning algorithms, CCAN is capable of exploring and exploiting corre-
lated interaction among the attention modules to locate and focus on
the discriminative regions of the input person image without the need
of any part (or pose) based estimator or detector network in a unified
end-to-endCNN architecture. In the future, we plan to design and incor-
porate attention-diversity loss into CCAN to obtain further improve-
ments and better focused attention maps. We also plan to study the
effects of augmenting CCANwith additional part/pose estimation or de-
tection networks in the future.
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