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Abstract
Embedding data in hyperbolic spaces has proven beneficial for many advanced machine learning applications. However,
working in hyperbolic spaces is not without difficulties as a result of its curved geometry (e.g., computing the Fréchet mean
of a set of points requires an iterative algorithm). In Euclidean spaces, one can resort to kernel machines that not only enjoy
rich theoretical properties but that can also lead to superior representational power (e.g., infinite-width neural networks).
In this paper, we introduce valid kernel functions for hyperbolic representations. This brings in two major advantages,
1. kernelization will pave the way to seamlessly benefit the representational power from kernel machines in conjunction
with hyperbolic embeddings, and 2. the rich structure of the Hilbert spaces associated with kernel machines enables us to
simplify various operations involving hyperbolic data. That said, identifying valid kernel functions on curved spaces is not
straightforward and is indeed considered an open problem in the learning community. Our work addresses this gap and
develops several positive definite kernels in hyperbolic spaces (modeled by a Poincaré ball), the proposed kernels include the
rich universal ones (e.g., Poincaré RBF kernel), or realize the multiple kernel learning scheme (e.g., Poincaré radial kernel).
We comprehensively study the proposed kernels on a variety of challenging tasks including few-shot learning, zero-shot
learning, person re-identification, deep metric learning, knowledge distillation and self-supervised learning. The consistent
performance gain over different tasks shows the benefits of the kernelization for hyperbolic representations.
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1 Introduction

This paper studies kernel methods for hyperbolic represen-
tations. Specifically, we propose a family of positive definite
(pd) kernel functions to map the embeddings in hyperbolic
spaces, to be specific Poincaré ball, into Reproducing Ker-
nel Hilbert Spaces (RKHSs), which enables us to seamlessly
benefit from kernel machines to analyze hyperbolic spaces.

In the machine learning community, the Euclidean space
has been the “workhorse” for feature embeddings of input
data (e.g., image or text). This is mainly because the high-
dimensional vector space is a natural generalization from
the familiar three-dimensional space we live in and per-
forming basic operations for comparison (e.g., calculating
distances and similarities) is easy and straightforward. How-
ever, embedding in Euclidean spaces can harm and distort
the structured data, thereby losing the complex geometric
information inherently present in the data. For example, the
Euclidean space fails to encode the hierarchical information
in graph-structured data (Liu et al., 2019).
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Several recent studies inmany advancedmachine learning
applications (such as natural language processing, computer
vision, or graph learning) suggest that embedding the data
using hyperbolic geometry can be beneficial as compared
to the common practice of using Euclidean geometry. This
includes tasks such as textual entailment (Ganea et al., 2018),
machine translation (Gulcehre et al., 2019), language-visual
reasoning (Gulcehre et al., 2019), image classification and
retrieval (Khrulkov et al., 2020), 3-D shape recognition
(Chen et al., 2020), graph classification (Liu et al., 2019)
and recommender systems (Tran et al., 2020), to name a few.

The hyperbolic space is characterized by a constant neg-
ative sectional curvature (in contrast to the flat structure of
the Euclidean space), and does not satisfy Euclid’s parallel
postulate. One intriguing property of hyperbolic spaces is
their capacity of encoding hierarchical data, as the volume
of hyperbolic space expands exponentially (Hamann, 2011),
thereby increasing their representation power.1 Although
several studies have successfully employed the hyperbolic
geometry for inference (Ganea et al., 2018; Khrulkov et
al., 2020; Cho et al., 2019), the difficulties of working
with such non-linear spaces still overwhelm their wider
use. For example, while averaging in Euclidean geometry
is straightforward, its counterpart in hyperbolic space is
approximated by the Fréchet mean. Computing the Fréchet
mean requires an iterative algorithm and could easily become
costly (Karcher, 1977; Lou et al., 2020). This motivates us to
develop kernels to make it possible to seamlessly benefit and
employ kernel machines towards analyzing hyperbolic data.

To make use of kernel machines, one needs to have a pd
kernel function at its disposal. Loosely speaking, a kernel
function is a measure of similarity. Many familiar kernels in
the Euclidean space are defined as functions of the Euclidean
distance (which is indeed the geodesic distance of the space).
Take the RBF kernel k(x, y) = exp(−ξd2(x, y)) as an
example. This might imply that valid pd kernels in curved
spaces, the hyperbolic space being one, can be constructed
once the geodesic distance is known. Unfortunately, this is
not the case as shown in Jayasumana et al. (2015); Feragen
et al. (2015) (c.f ., theorem 6.2 in Jayasumana et al. (2015)),
because such curved spaces are not isometric toflatEuclidean
spaces. Interestingly, the difficulty of defining pd kernels on
curved spaces is now considered an open problem inmachine
learning (Feragen & Hauberg, 2016).

In our preliminary study (Fang et al., 2021a), we address
the design challenge of pd kernels for hyperbolic representa-
tions. To be specific, we leverage the Poincaré ball to model
the hyperbolic space and propose four valid pd Poincaré
kernels, including the simple linear-like kernel as well as
the universal ones. The pd properties of the proposed ker-

1 In practice, such hierarchical structure can be revealed by the geodesic
distance of two points.

nels are also proved mathematically. To evaluate the power
of the proposed kernels, we also conduct experiments on
several vision tasks and employ the kernels along deep neu-
ral networks (DNNs) to attain rich models for inference.
Empirically, we observe the kernelization for hyperbolic rep-
resentations brings performance gain considerably over the
baseline model.

Despite the significant improvement from the proposed
single kernels in our preliminary study (Fang et al., 2021a),
tuning such kernel functions may become cumbersome in
practice. In another word, it is not sufficient for an intelligent
system, endowed with such a kernel, to deal with a vari-
ety of learning tasks. For example, the appropriate kernel
varies for different datasets. Furthermore, tuning the kernel
parameter (e.g., the bandwidth for RBF kernel) is indeed
effort-consuming and requires a lot of domain knowledge of
tasks (Wang et al., 2021). A possible method to mitigate the
issues is the multiple kernel learning (MKL) scheme, which
learns the combination of base kernels from data (Rako-
tomamonjy et al., 2008; Wang et al., 2021). MKL is flexible
and efficient as it automates kernel learning, such that the
form of the learned kernel can fit well for the task at hand,
without extensively selecting appropriate kernels and tuning
the kernel parameter. This inspires us to benefit from the
MKL scheme, which designs a general formulation, consti-
tuting multiple weighted kernels, in the Poincaré ball. To the
best of our knowledge, this is the very first attempt where
the MKL scheme is implemented for hyperbolic representa-
tions. Table 1 shows the formulation of the proposed kernels,
including the one with the MKL scheme.

This manuscript extends our preliminary study in several
aspects. First, on top of the kernels proposed in (Fang et
al., 2021a), we investigate a new kernel, namely, Poincaré
radial kernel, in conjunction with its theoretical analysis. It
has been widely recognized in the community that kernel
selection and tuning are not easy. While the MKL scheme
effectively addresses the issues via automating to learn the
kernel formulation from data, without tuning the kernel. The
proposed Poincaré radial kernel can form the MKL scheme
and adaptively learn the combination weights for base ker-
nels. Empirically, the Poincaré radial kernel attains overall
better performance than other kernels. Second, two more
challenging machine learning tasks (i.e., deep metric learn-
ing and self-supervised learning) are adopted to evaluate
Poincaré kernels. In doing so,we kernelize the triplet loss and
contrastive loss for deep metric learning and self-supervised
learning respectively. To the authors’ best knowledge, the
kernelization of triple loss and contrastive loss has not been
studied in the existing literature. Finally, in our initial ver-
sion of thiswork,we investigate a good practice of hyperbolic
geometry along with DNNs, as a side contribution (mapping
the embedding into Poincaré directly, instead of mapping
from the tangent space in existing works (Khrulkov et al.,
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2020; Chen et al., 2020)). To better understand why such
practice works, we also include a toy experiment to visualize
the embedding quality in the Poincaré ball, which reason-
ably shows that our kernels make better use of geometry
constraints.

The code will be made available freely to the research
community.

2 RelatedWork

Our work mainly focuses on integrating geometry in deep
learning frameworks and kernel methods over the manifold.
In this section, we briefly give an overview of related works.

2.1 Geometric Constraint Learning

In the deep learning era, the representation power of raw
data can be improved by integrating geometric constraints
in deep neural networks. That is, the network benefits from
the underlying property of the geometry, thereby pushing
the network to encode complex structures of data. In Fang et
al. (2021b); Simon et al. (2020), a couple of images can be
represented by a set or a subspace. In SVDNet, the orthogo-
nality constraint enforces the fully connected layer lying on
the Grassmannianmanifold, which de-correlates the features
among entries (Sun et al., 2017). Constraining the trajectory
of models in the Grassmannian manifold benefits the con-
tinual learning to prevent catastrophic forgetting (Simon et
al., 2021). The works in Liu et al. (2017); Meng et al. (2019)
also show that embedding in a spherical space is particularly
effective for similarity learning (e.g., face verification, clus-
tering, metric learning) compared to using Euclidean spaces.

In recent years, hyperbolic geometry has gained substan-
tial interest thanks to its tree-like nature, and the ability to
encode hierarchical relationships in data. Generalizing the
basic operations in the Euclidean geometry, the very first
work develops hyperbolic layers in neural networks (Ganea
et al., 2018). The followingworks further show the success of
hyperbolic embeddings for graph-structured data, language
data, visual data as well as 3-D data (Liu et al., 2019; Gul-
cehre et al., 2019; Khrulkov et al., 2020; Chen et al., 2020).
Such works enjoy the powerful hyperbolic representation by
exploiting the data hierarchy. More complex structures of
data are also studied in Gu et al. (2019); Skopek et al. (2020),
which represents the data in a mixed-curvature geometry.
The success of the data embedding in non-flat spaces shows
that learning the data distribution/structure is important in
building the discriminative data representation. Despite its
significant performance gain in existing works, the hyper-
bolic embedding is projected from the tangent space, it thus
cannot fully utilize the property of the hyperbolic geometry in
the sense that every presentation is approximated, which flat-

tens the geometry, especially for the points which are away
from the origin.

2.2 Kernel Methods

Kernel methods have been studied extensively and proven
its success in a broad range of machine learning approaches,
e.g., SVM, PCA and clustering (Hofmann et al., 2008). The
main idea of kernel methods is to project the input samples,
to a high-dimensional (or even infinite-dimensional) Repro-
ducing Kernel Hilbert Space (RKHS), where the projected
data can be analyzed with linear models. To avoid explicit
lifting to RKHS, the kernel trick provides a simple way to
generate the similarity measure of pairs in RKHS. Following
this line of research, various kernel formulations are defined
(Hofmann et al., 2008), e.g., polynomial kernel, RBF ker-
nel, Laplace kernel, etc. A natural generalization over the
use of such a single and fixed kernel is on learning the adap-
tive kernel functions, e.g., multiple kernel learning (MKL)
scheme (Rakotomamonjy et al., 2008; Lanckriet et al., 2004).
In MKL, the final kernel formulation is a conic combination
of base kernels and the weights are learned from the data,
such that the learned kernel machine can match with the data
to the utmost extent (Rakotomamonjy et al., 2008; Wang et
al., 2021).

As of late, attempts to boost the representational power
of structured data by generalizing the kernel methods to
non-linear geometries have gained increasing attention. The
common strategy to define avalid pdkernel onnon-Euclidean
geometries is to adopt a proper distance metric. In Jaya-
sumana et al. (2013), the authors propose themain theoretical
framework to design the Gaussian kernel on symmetric posi-
tive definite matrices. The proposed theory is further verified
to develop the Gaussian kernel on the Grassmann manifold
(Jayasumana et al., 2015). More kernels for the Grassmann
manifold are studied inHarandi et al. (2014). InHarandi et al.
(2014), the pd Grassmannian kernels are proposed by adopt-
ing the equivalent embedding functions. The kernels using
the Fisher information metric are developed for the persis-
tence diagrams in Le and Yamada (2018). In Jayasumana et
al. (2014), the radial kernel for a series of compact manifolds
(e.g., n-sphere, Grassmann manifold and shape manifold) is
also developed. The closest study to our work is the work
of Cho et al. (2019), which formulates the support vector
machine (SVM) inhyperbolic spaces. To facilitate the nonlin-
ear decision boundaries, the kernel SVM for the hyperbolic
space is also introduced in Cho et al. (2019). However, the
proposed kernel inCho et al. (2019) is not pd, such that it does
not have theoretical properties of pd kernel. In another word,
the indefinite kernel the proposed indefinite kernel is not a
universal kernel and hence violates the universal approxima-
tion property (Micchelli et al., 2006). In addition, training
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the indefinite kernel is not easy as it requires stabilizing the
loss value (Ong et al., 2004).

In contrast to existing works, our work develops the theo-
retical framework for positive definite kernels on hyperbolic
geometry. As a complementary concept to the indefinite
kernel, our work kernelizes the hyperbolic space, and thus
embeds hyperbolic data into a high, possibly infinite, dimen-
sional Hilbert space, such that the resulting representations
benefit from kernel machines. In the remainder of this paper,
we will present the developed theory and evaluate the algo-
rithms across different challenging applications.

3 Preliminaries and Background

3.1 Notations

Formally, let Hn , Rn , Rm×n and H denote n-dimensional
hyperbolic spaces, n-dimensional Euclidean spaces, spaces
ofm×n real-valuedmatrices andHilbert spaces. The symbol
N0 is a set of positive integer and 0, defined as N0 := N∪ 0.
Throughout the paper, the matrices and vectors are denoted
by bold capital letters (e.g., X) and bold lower-case letters
(e.g., x), respectively. The transpose of a matrix (e.g., X) or
a vector (e.g., x) is denoted by the superscript 
, e.g. X
 or
x
. The sigmoid function is defined as sigmoid(·) : R →
R, sigmoid(x) := 1

1+e−x . The hyperbolic tangent function

is defined as tanh(·) : R → R, tanh(x):= e2x−1
e2x+1

and its

inverse is defiend as tanh−1(·) : R → R, tanh−1(x) :=
1
2 ln

(
1+x
1−x

)
, |x | < 1. The Iverson bracket for the mathemat-

ical statement e, denoted by �e�, is defined by:

�e� =
{
1 if e is true,
0 otherwise.

(1)

3.2 Hyperbolic Geometry

Ann-dimensional hyperbolic spaceHn is aRiemannianman-
ifold with a constant negative curvature (Absil et al., 2007).
Following the common practice of employing the hyperbolic
geometry as embedding space, we use the Poincaré ballD to
work with the hyperbolic space. The Poincaré ball is a model
of n-dimensional hyperbolic geometry inwhich all points are
embedded within an n-dimensional sphere (or inside a circle
in the 2D case which is called the Poincaré disk model). For-
mally, the Poincaré ball model, with curvature −c (c > 0),
is defined as a manifoldDn

c = {z ∈ R
n : c‖z‖ < 1}, with the

Riemannian metric gDc (z) = λ2c(z) · gE , in which λc(z) is
the conformal factor, defined as 2

1−c‖z‖2 , and gE = In is the
Euclidean metric tensor. Furthermore and to facilitate vector
operations, theMöbius gyrovector spacemay come in handy.

The Möbius addition for zi , z j ∈ D
n
c is defined as:

zi ⊕c z j = (1 + 2c〈zi , z j 〉 + c‖z j‖2)zi + (1 − c‖zi‖2)z j
1 + 2c〈zi , z j 〉 + c2‖zi‖2‖z j‖2 .

(2)

In the Poincaré ball, the geodesic distance2 for two points
zi and z j on Dn

c is:

dc(zi , z j ) = 2√
c
tanh−1(

√
c‖ − zi ⊕c z j‖). (3)

For a point z ∈ D
n
c , the tangent space at z, denoted by

TzDn
c , is an inner product space, which contains the tangent

vector with all possible directions at z. The Riemannian met-
ric gDc at point z is a positive definite symmetric bilinear
function on TzDn

c as gDc (z) : (TzDn
c × TzDn

c ) → R. In other
word, the tangent space at x is a Euclidean space, and the
scale factor is decided by the conformal factor λc(z).

The exponential map provides a way to project a point
p ∈ TzDn

c to the Poincaré ball D
n
c , as follows:

Γz( p) = z ⊕c

(
tanh

(√
c
λc(z) · ‖ p‖

2

)
p√
c‖ p‖

)
. (4)

The inverse process of the exponential map is termed log-
arithm map, which projects a point q ∈ D

n
c , to the tangent

plane of z (i.e., TzDn
c ), and is given as:

Υz(q) = 2√
cλc(z)

tanh−1(
√
c‖ − z ⊕c q‖) −z ⊕c q

‖ − z ⊕c q‖ .

(5)

Note that Υz (Γz( p)) = p ∈ TzDn
c . Both the exponential

and the logarithmmaps are injective functions in the Poincaré
model. In this paper, we leverage the scaled Euclidean space
in the identity tangent plane to define the Poincaré kernels
for hyperbolic spaces.

4 Poincaré Kernels for Hyperbolic
Representations

In this section, we propose positive definite (pd) kernels in
hyperbolic spaces. Essentially, we are interested in identi-
fying a bivariate function k(·, ·) : (Dn

c × D
n
c ) → R, which

2 The geodesic is the shortest path between two points. Its length is
termed geodesic distance. For example, the geodesic of the Euclidean
space is a straight line connecting two points, and it becomes the well-
knownEuclidean distance. On the contrary, the geodesic of the n-sphere
is the curve along the sphere, such that the geodesic distance is the length
of the curve.
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represents an inner product in a Reproducing Kernel Hilbert
Space (RKHS). Obviously, not all bivariate functions con-
stitute valid kernels, meaning that they do not necessarily
realize an RKHS.

Also, popular kernels in Euclidean spaces cannot lead to
meaningful solutions as they are not faithful to the geometry
of the hyperbolic spaces. Embedding hyperbolic points into
an RKHS is not only theoretically appealing but can also
result in practical benefits due to the intriguing properties
of RKHSs. Though the indefinite kernels are developed in
hyperbolic spaces (Cho et al., 2019), we believe the devel-
opment of pd kernels is also necessary for the reason that
pd kernels are core to many developments in machine learn-
ing. That is, the pd property is essential for various algorithms
such asGaussian process (Hofmann et al., 2008), two-sample
tests in RKHS (Gretton et al., 2012) and many more. Focus-
ing on deep learning and as an example, theNTK (Jacot et al.,
2018) relies on the pd property. Add to this, the recent work
(Domingos, 2020), where again developments make use of
the pd property.

In this paper, we make use of the tangent space of the
hyperbolic geometry to define a set of valid pd kernels. We
start by formally defining a pd kernel.

Definition 1 (Positive Definite Kernels (Berg et al., 1984))
Let Z be a non-empty set. A symmetric function k(·, ·) :
(Z × Z) → R is a positive definite (pd) kernel on the set
Z if and only if

∑m
i, j=1 ci c j k(zi , z j ) ≥ 0 for any m ∈ N,

zi ∈ Z and ci ∈ R.

Essential to our work is the following lemma;

Lemma 1 Let Z be a non-empty set. Consider a function
f (·) : Z → R

n, that maps each element of Z to Rn. Then,

k(zi , z j ) = 〈
f (zi ), f (z j )

〉

is a pd kernel on Z .

Proof The proof of this lemma follows immediately from
Definition 1. To see this, define

Fn×m := [
f (z1), f (z2), · · · , f (zm)

]
.

Now, notice that

m∑

i, j=1

ci c j k(zi , z j ) = c
Kc = c
F
Fc = ‖Fc‖2 ≥ 0 .

The
[
Km×m

]
i, j = k(zi , z j ) is called the gram matrix. �

Based on Lemma 1,we propose tomake use of fD(·) : Dn
c →

R
n defined as,

fD(z):=tanh−1(
√
c‖z‖) z√

c‖z‖ , (6)

to develop valid pd kernels onDn
c . The function fD(·) enjoys

various unique properties. First note that the function is bijec-
tive and fD(z) = Υ0(z). The next theorem establishes an
important property and justifies our choice here better.

Theorem 1 (Curve Length Equivalence) A curve in D
n
c is a

continuous function γ (·) : [0, 1] → D
n
c ; joining the starting

point γ (0) to the end point γ (1). Define the distance induced
by fD as

de
(
zi , z j

) :=∥∥ fD(zi ) − fD(z j )
∥∥. (7)

The length of any given curve γ is the same under de and the
geodesic distance dc up to a scale of 1/λ̃c, where λ̃c = 2 is
the conformal factor at the origin.

Proof The proof is relegated to the Supplementary Material
of our paper due to space limitations. �

Having fD(·) at our disposal, we are now ready to define
the Poincaré kernels in hyperbolic spaces.

4.1 Poincaré Tangent Kernel

The simplest pd kernel resembles the linear kernel in
Euclidean spaces and is defined as

ktan(zi , z j ) = 〈 fD(zi ), fD(z j )〉. (8)

We call this kernel Poincaré tangent kernel as it can
be understood as the linear kernel in the identity tangent
space of the Poincaré ball. This kernel is attractive as it
is parameter-less, making it ideal for fast prototyping. The
proof of positive-definiteness of the hyperbolic tangent ker-
nel follows directly from Lemma 1.

4.2 Poincaré RBF Kernel

The Gaussian RBF kernel is a popular universal kernel in
Euclidean spaces. In R

n , the RBF kernel can be written as
k(xi , x j ) = exp(−ξ‖xi − x j‖2), ξ > 0, where the metric
is the squared Euclidean distance in Rn . Taking into account
the properties of the RBF kernel (Christmann & Steinwart,
2008), it is very desirable to extend this kernel to hyperbolic
spaces. One may assume that replacing the Euclidean dis-
tance by the geodesic distance (i.e., Eq. (3)) can lead to a
valid pd kernel. This, unfortunately, is not the case as shown
by the toy example below.

Example 1 Consider a 3-dimensional Poincaré ball with cur-
vature c = 0.1 (i.e., D3

0.1) and the following points in D
3
0.1:

z1=
⎡

⎣
0.1885
0.2330
0.9526

⎤

⎦, z2=
⎡

⎣
0.6586
0.2053
0.0894

⎤

⎦, z3=
⎡

⎣
0.3017
0.4155
0.5357

⎤

⎦, z4=
⎡

⎣
0.2388
0.8290
0.3790

⎤

⎦.
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The gram matrix (i.e., exp(−ξd2c (zi , z j )) for ξ = 0.01) for
these four points has a negative eigenvalue of −3.0605 ×
10−5.

Further to the counterexample above, the RBF kernel
derived from the geodesic distance is shown to be pd iff the
space is isometric to the Euclidean space per the following
theorem.

Theorem 2 (Theorem 6.2 in Jayasumana et al. (2015))
Let M be a complete Riemannian manifold and dM
be the induced geodesic distance on the manifold. The
Gaussian RBF kernel k(·, ·) : (M × M) → R :
k(mi ,m j ):= exp(−ξd2M(mi ,m j )) is positive definite for all
ξ > 0 if and only if the Riemannian manifoldM is isometric
to some Euclidean space Rn.

According to Theorem 2, it is theoretically impossible to
obtain a valid RBF kernel using geodesic distance on hyper-
bolic spaces.3 Given the above, we propose to make use of
de(·, ·) and define the Poincaré RBF kernel as

krbf(zi , z j ) = exp
(
−ξ‖ fD(zi ) − fD(z j )‖2

)
. (9)

To show that the form in Eq. (9) is a valid pd kernel, we first
define negative definite (nd) kernels.

Definition 2 (Negative Definite Kernels (Berg et al., 1984))
Let Z be a non-empty set. A symmetric function k(·, ·) :
(Z × Z) → R is a negative definite (nd) kernel on the set
Z if and only if

∑m
i, j=1 ci c j k(zi , z j ) ≤ 0 for any m ∈ N,

zi ∈ Z and ci ∈ R with
∑m

i=0 ci = 0.

Note the difference between pd and nd kernels. For nd ker-
nels, an additional condition (i.e.,

∑m
i=0 ci = 0) is required.

The following lemma shows that d2e (·, ·) = ‖ fD(zi ) −
fD(z j )‖2 is indeed nd.

Lemma 2 Let Z be a non-empty set. An injective function
f (·) : Z → R

n, maps each vector in Z onto an inner prod-
uct spaceRn. Then k(zi , z j ):=‖ f (zi )− f (z j )‖2 is negative
definite.

Proof The proof is relegated to the Supplementary Material
of our paper due to space limitations. �

The following important theorem establishes the connec-
tion between positive definite kernels and negative definite
kernels.

3 If a manifold M is isometric to some Euclidean spaces Rn , then the
geodesic distance on M is the Euclidean distance in R

n . However, it
is impossible to find an isometry between D

n
c and R

n because of the
difference in the curvature of two geometries.

Theorem 3 (Berg et al., 1984) LetZ be a non-empty set and
k(·, ·) : (Z × Z) → R be a kernel. The exponential type
kernel k(zi , z j ) = exp(−ξΦ(zi , z j )) is positive definite for
all ξ > 0 if and only if Φ(·, ·) is negative definite.

Stating the fact that d2e (·, ·) is nd along with Theorem 3
concludes our claim that the Poincaré RBF kernel defined in
Eq. (9) is pd.

4.3 Poincaré Laplace Kernel

The Laplace kernel is another widely used universal kernel in
Euclidean spaces, formulated as k(xi , x j ) = exp(−ξ‖xi −
x j‖), ξ > 0. When extending the Laplace kernel to hyper-
bolic spaces, we use the following theorem to build a nd
kernel for hyperbolic spaces.

Theorem 4 (Berg et al., 1984) If k : (Z × Z) → R is
negative definite and satisfies k(zi , z j ) ≥ 0, then kα is also
negative definite for 0 < α < 1.

Combining Theorem 3 and Theorem 4, and choosing α =
1
2 , we could obtain the Poincaré Laplace kernel as

klap(zi , z j ) = exp
(−ξde( fD(zi ), fD(z j ))

)

= exp
(−ξ‖ fD(zi ) − fD(z j )‖

)
.

(10)

A more general form of the Poincaré Laplace kernel (i.e.,
generalized Poincaré Laplace kernel) can be further derived
as:

kglap(zi , z j ) = exp
(
−ξ‖ fD(zi ) − fD(z j )‖2α

)
, (11)

where 0 < α < 1.

4.4 Poincaré Binomial Kernel

In addition to the exponential type kernels, we further con-
struct a Poincaré binomial kernel. To obtain the Poincaré
binomial kernel, we make use of the following lemma.

Lemma 3 Let Z be a non-empty set. An injective function
f : Z → R

n, maps each vector in Z onto an inner product
space Rn. Then k(zi , z j ):=

(
1 − 〈 f (zi ), f (z j )〉

)−α
defines

a binomial kernel on Z when α > 0 and ‖ f (z)‖ < 1.

Proof According to Lemma 4.8 of Christmann and Stein-
wart (2008), if the function k(·, ·) can be decomposed by
a full Taylor series with each term being non-negative,
then we can claim k(·, ·) is a valid pd kernel. Let t =
〈 f (zi ), f (z j )〉, the binomial series k(zi , z j ) = (1− t)−α =∑∞

n=0

( −α
n

)
(−1)ntn holds for all |t | < 1, where the bino-

mial coefficient
(

β
n

) := ∏n
i=1(β − i + 1)/i . It can be seen( −α

n

)
(−1)n > 0 when α > 0, which indicates the binomial

kernel has a non-negative and full Taylor series. �
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According to the Lemma 3, we could obtain the Poincaré
binomial kernel as

kbin(zi , z j ) = (
1 − 〈 fD(zi ), fD(z j )〉

)−α
, α > 0. (12)

Also, given the non-negativeness and full Taylor series in
the above proof, we can further claim that the Poincaré bino-
mial kernel satisfies the necessary and sufficient condition of
being universal, shown in Corollary 4.57 of Christmann and
Steinwart (2008).

4.5 Poincaré Radial Kernel

The above proposed universal kernels suffer from the diffi-
culty of tuning the hyper-parameters (e.g., ξ and α in Table 1)
to attain good performances. One can address this issue by
employing multiple kernel learning (MKL) scheme, which
automates the kernel learning and learns an optimal kernel
function per task. In this section, we will develop a learnable
kernel, termed Poincaré radial kernel, which is a combina-
tion of simple inner product kernels. Instead of using Eq. (6),
we leverage the mapping:

gD(z):= fD(z)
‖ fD(z)‖ , (13)

to develop our Poincaré radial kernel. This mapping can be
understood as mapping the points in the Poincaré ball to a
n-sphere in the tangent plane of identity. It’s a natural choice
that mapping points to the sphere benefits the real-practice
in conjunction with the CNNs (Liu et al., 2017; Hao et al.,
2019).

Given the mapping gD(·), we first formulate the Poincaré
cosine kernel as the basic kernel unit in MKL, as follows:

kcos(zi , z j ) = 〈gD(zi ), gD(z j )〉. (14)

Referring to Lemma 1, one can easily prove that kcos(·, ·)
is pd in the Poincaré ball Dn

c . We then define other com-
ponents by the following closure properties of pd kernels
(Jayasumana et al., 2014; Berg et al., 1984).

1. If two kernels k1 and k2 are pd, then so is k1k2, and
therefore kn1 , for all n ∈ N.

2. If all kernel in a point-wise convergent sequence k1, k2, . . .
are pd, then their point-wise limit k = limi→∞ ki is also
pd.

3. If two kernels k1 and k2 are pd, then so is their conic
combination a1k1 + a2k2, where a1, a2 ≥ 0.

From the 1st property and the trivial result that k0 = 1 is
pd, we have:

kcosm (zi , z j ) = 〈gD(zi ), gD(z j )〉m, (15)

wherem ∈ N0. The 2nd property can be employed to identify
the following two kernels:

kcos−1 (zi , z j ) =

⎧
⎪⎨

⎪⎩

1 if gD(zi ) = gD(z j ),

−1 if gD(zi ) = −gD(z j ),

0 otherwise,

(16)

and

kcos−2 (zi , z j ) =
{
1 if gD(zi ) = ±gD(z j ),

0 otherwise,
(17)

with the 3rd property, one can develop the pd kernels via
combining the kernels in Eqs. (15), (16) and (17). Specifi-
cally, the following theorem gives us theoretical support for
our development of Poincaré radial kernel.

Remark 1 Eq. (16) resembles an indicator function in the
sense that it rewards if gD(zi ) matches gD(z j ). It also penal-
izes if gD(zi ) sits opposite to gD(z j ) on the sphere realized
by Eq. (13) in the tangent space at origin of Dn . In contrast,
Eq. (17) rewards both cases equally.

Theorem 5 (Theorem 4.4 in Jayasumana et al. (2014)) Let
(Z, d) be a metric space and SH be the unit sphere in a real
Hilbert space H. If there exists a function g(·) : Z → SH
that is a scaled isometry between (Z, d) and (H, ‖.‖), then
any kernel k(·, ·) of the form:

k(zi , z j ) =
∞∑

m=−2

amk
cos
m (g(zi ), g(z j )), (18)

where
∑

m am < ∞ and am ≥ 0 for all m, is pd and radial
on (Z, d). Furthermore, if g(·) : Z → SH is surjective, all
pd radial kernels on (Z, d) are of this form.

Having the induced cosine-type kernels and Theorem 5 at
hand, our Poincaré radial kernel can be formulated as:

krad(zi , z j ) =
∞∑

m=0

amk
cos
m (zi , z j )

+ a−1
(
�k−1(zi , z j ) = 1� − �k−1(zi , z j ) = −1�

)

+ a−2�k−2(zi , z j ) ∈ {−1, 1}�,
(19)

where am ≥ 0 and
∑∞

m=−2 am < ∞. �·� indicates the Iver-
sion bracket.
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Plugging Eq. (14) into Eq. (19), we can obtain the final
formulation of the Poincaré radial kernel, as:

krad(zi , z j ) =
∞∑

m=0

am〈gD(zi ), gD(z j )〉m

+ a−1
(
�k−1(zi , z j ) = 1�

−�k−1(zi , z j ) = −1�
)

+ a−2�k−2(zi , z j ) ∈ {−1, 1}�.

(20)

To ensure the learned Poincaré radial kernel remains
pd during the training process, one needs to constrain the
weights (am in Eq. (20)) to have positive values. This can be
achieved by imposing an activation function on the weights.
The commonly used activation functions such as ReLU(·),
softmax(·), and sigmoid(·) can be used for this purpose.
Following the practice in Jayasumana et al. (2021), we
adopt the sigmoid(·) function to ensure this constraint, i.e.,
am := sigmoid(am). This choice is also justified in Sect. 5.8.

Also, in Eq. (20), the Poincaré radial kernel contains infi-
nite series of base kernels.While in practice, a few first terms
can properly approximate the kernel. In another word, we
need to choose an optimal number of kernelsM and through-
out the paper, the number is set to M = 50, which will be
justified in Sect. 5.

Remark 2 Eq. (6) can provide a simple way to construct an
MKL function as:

k(zi , z j ) =
M∑

m=0

am〈 fD(zi ), fD(z j )〉m . (21)

For am ≥ 0, this kernel is pd. However, empirically we
observe that a DNN optimized with the above kernel k(·, ·)
maybecome instable in convergence and does not necessarily
lead to improved performances. This is verified in the few-
shot learning (FSL) task. Specifically, in the miniImageNet
dataset, the recognition accuracy of the network is degraded
by 2.61% and 1.23% in the 5-way 1-shot and 5-way 5-shot
settings, respectively. This motivates the development of the
Poincaré radial kernel using Eq. (13).

Remark 3 Noted that both Poincaré tangent kernel in Eq. (8)
and Poincaré cosine kernel in Eq. (14) are inner product ker-
nels in T0Dn

c . In another word, Poincaré cosine kernel is the
normalized version of Poincaré tangent kernel, and can be
understood as a cosine similarity in the identity tangent plane
for xi and x j . In addition, the Poincaré cosine kernel is the
basic kernel unit for the Poincaré radial kernel (see Eq. (20)),
required by the Theorem 5.

Remark 4 As alluded to earlier, we have made use of the
identity tangent space of the Poincaré ball (i.e.,Dn

c ) to define
pd kernels for the hyperbolic spaces. This implies that the

kernels are defined using the Lie algebra of Dn
c . Such a con-

struction has been used with success in other manifolds (e.g.,
SPD as in Jayasumana et al. (2015)).

In this paper, we employ the kernels along with convo-
lutional neural networks (CNNs) to attain rich models for
computer vision tasks. The CNNs encode the input data to
vectors, distributed in hyperbolic spaces. Then the proposed
kernels are further used to train the network.

5 Experiments

In this section, we will conduct comprehensive experiments
to verify the superiority of the proposed Poincaré kernels.We
first use a toy example to evaluate the embedding quality in
the hyperbolic space, learned by kernels. Thereafter, a variety
of challenging tasks are adopted to verify the effectiveness
and generalization of the proposed algorithms.

5.1 Good Practice of Employing Hyperbolic
Geometry

Few works have studied the problem of learning an embed-
ding in hyperbolic spaces (Chen et al., 2020; Khrulkov et al.,
2020). However, the existing works generate the vectors in
the tangent space at the origin and project to the hyperbolic
spaces using Γ0(·)4 mapping (see Fig. 1a). A drawback of
this framework is that the hyperbolic geometry is not fully
utilized as every representation is flattened at the identity
(i.e., origin of Poincaré ball). In other words, only the vec-
tors very close to the origin represent hyperbolic distances.
In contrast, and in our experiments, we generate hyperbolic
presentations directly in the Poincaré ball, as illustrated in
Fig. 1b. To be specific, a neural network encodes the input
to a vector representation z, and it can be ensured in the
Poincaré ball, with curvature −c (c > 0), constrained by the
following:

z :=
{
z if ‖z‖ ≤ 1√

c

(1 − ε) z√
c‖z‖ else,

(22)

where ε is a tiny value used for numerical stability.
Throughout this paper, the ε value is set to 10−3. The Eq. (22)
can be understood as a re-projection that constrains the rep-
resentation in the Poincaré ball.

To justify the good practice of our choice, we first visu-
alize the embedding quality by a toy example. In this study,
we train a simple CNN on the MNIST dataset (LeCun et

4 Noted the function Γ0(·) realizes the mapping to project the points
in the identity tangent space (i.e., T0Dn

c ) into a Poincaré ball (i.e., D
n
c ),

which is defined as Γ0(x) = tanh(
√
c‖x‖) x√

c‖x‖ for x ∈ T0Dn
c .

123



International Journal of Computer Vision

Fig. 1 Schematic comparison between existing works and our work in
employing constraints from the hyperbolic geometry

al., 1998) over three settings. In the first setting, the net-
work training follows the baseline in Khrulkov et al. (2020),
which performs the classification task in the Poincaré ball (as
shown in Fig. 1a). The second setting is to train a network
following the proposed paradigm without using any kernels.
The third setting, following the paradigm of Fig. 1b, trains a
network using the simple Poincaré tangent kernel, proposed
by our work. Figure2 illustrates the feature embeddings in a
2-dimensional Poincaré ball under two training settings.

From Fig. 2, we can observe that in both the first (see
Fig. 2a) and the third setting (see Fig. 2c), most of the sam-
ples are distributed near the boundary. Similar observations
were also made in Khrulkov et al. (2020). However, in the
second setting (see Fig. 2b), some classes are distributed near
the boundary while others are clustered within the Poincaré
ball.When comparing the visualization of hyperbolic embed-
dings from Khrulkov et al. (2020) (see Fig 2a) with our
embeddings obtained without using kernels (see Fig. 2b), it
is evident that our practice yields more discriminative hyper-
bolic embeddings. In Khrulkov et al. (2020), the hyperbolic
embeddings heavily overlap, and the within-class variance of
certain classes (e.g., red and black) is very large. On the other
hand, it demonstrates that our approach with the Poincaré

tangent kernel (see Fig. 2c) results in more evenly and com-
pactly distributed class clusters, clearly demonstrating the
effectiveness of the proposed kernels.

In the remainder of this section,wecontinue to evaluate the
effectiveness of Poincaré kernels on a set of challenging com-
puter vision tasks, i.e., few-shot learning, zero-shot learning,
person re-identification, deep metric learning, knowledge
distillation and self-supervised learning.

5.2 Few-Shot Learning

Problem setting Few-shot learning (FSL) is required to learn
an embedding space, which should be adapted to recognize
unseen classes at test time, given only a few samples of each
new class (Snell et al., 2017; Sung et al., 2018; Vinyals et
al., 2016; Hong et al., 2021). The network is trained in a
meta-learning manner (see Fig. 3), which is also known as
task-agnostic FSL. In each iteration, we sample an episode of
data to train the network. Specifically, this protocol is well-
known as N -way K -shot classification, which realizes the
N -class recognition task per episode. In our experiments, we
follow the general practice (i.e., 5-way 1-shot and 5-way 5-
shot) to evaluate the model. We employ the pipeline in the
prototypical network (ProtoNet) (Snell et al., 2017) along
with the proposed kernels to train the feature extractor.

In the training phase, each episode is composed of a sup-
port set S = {

({si,1, . . . , si,K }, li ) : i = 1, . . . , N
}
and a

query set Q = {(qi , li ) : i = 1, . . . , N }. The prototype of
each class is computed by ŝi = 1

K

∑K
j=1 si, j . Then the pro-

totypical network (ProtoNet) formulates the loss function as:

LE
fsl = − 1

Nq

Nq∑

i=1

log

(
exp(−‖qi − ŝ∗‖)

∑N
j=1 exp(−‖qi − ŝ j‖)

)

, (23)

Fig. 2 Visualization of feature embeddings in hyperbolic spaces
learned for MNIST dataset. a: Hyperbolic embeddings trained by the
pipeline in Khrulkov et al. (2020). b Hyperbolic embeddings from our
work without kernels. c: Hyperbolic embeddings trained by the pipeline
in ourwork.Here,we use the hyperbolic tangent kernel. It shows that the
hyperbolic embeddings from our practice are more discriminative than
that from Khrulkov et al. (2020), as the hyperbolic embeddings from

Khrulkov et al. (2020) are heavily overlapped and the within class vari-
ance of some classes (e.g., red and black) are very large. As compared
to the one without using kernels in (b), our practice with Poincaré tan-
gent kernel in (c) makes the class clusters more evenly and compactly,
clearly showing the effectiveness of the proposed kernels. Best viewed
in color
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Fig. 3 The pipeline of the deep network for few-shot recognition. X S
and XQ denote the input images in the support set and query set

where qi and ŝ∗ share the same label, and Nq is the number
of query samples in one episode.

Noted that qi , ŝi ∈ R
n for the vanilla ProtoNet, thus the

distance used in Eq. (23) is the L2 distance. Then in the
hyperbolic version (i.e., Hyper ProtoNet), where qi , ŝi ∈ D

n
c ,

the loss is further formulated as:

LH
fsl = − 1

Nq

Nq∑

i=1

log

(
exp(−dc(qi , ŝ

∗
))

∑N
j=1 exp(−dc(qi , ŝ j ))

)

, (24)

where dc is the geodesic distance in the Poincaré ball.
We further plug our kernels in the loss functions, as:

LK
fsl = − 1

Nq

Nq∑

i=1

log

(
g(k(qi , ŝ

∗
))

∑N
j=1 g(k(qi , ŝ j ))

)

, (25)

where k(·, ·) indicates the kernel, and qi , ŝi ∈ D
n
c . Here,

g(·) is exp function if k(·, ·) is non-exponential type kernels.
Otherwise, g(·) is the identity mapping.

In terms of the feature extractor, we use both Conv-
4 (Snell et al., 2017) and ResNet-18 (He et al., 2016) as
CNN backbones in our experiments. Moreover, four popular
benchmarks, i.e., miniImageNet (Deng et al., 2009), CUB
(Wah et al., 2011), tiered-ImageNet (Ren et al., 2018) and
Few-shot-CIFAR100 (FC100) (Oreshkin et al., 2018) are
adopted to assess our algorithms. The details of datasets are
included in the Supplementary Material.
Related work We will review the literature on FSL, primar-
ily based on the metric-learning approaches. In theMatching
networks (Vinyals et al., 2016), a sample-wise metric is
learned to determine the category of a query. An extension
idea develops the class-wise metric (Snell et al., 2017), in
which all samples per class is considered as a class descrip-
tor. Explicitly modeling a non-linear relationship is studied
in Relation Networks (Sung et al., 2018), such that the
latent metric is data-dependent and adaptive. Considering
themisalignment issue of objects within images, Zhang et al.
leverage the optimal transport techniques in themetric space,
such that the distance metric can be calculated via optimal

patch feature matching (Zhang et al., 2020). The alignment
can also be achieved by attention mechanism (Hong et al.,
2021) or dynamic filters (Xu et al., 2021). The recent work
investigates to model the context information of support set,
improving the discrimination of embeddings (Ye et al., 2020).

The close direction to our work is the geometric learning
in metric spaces. In Rodríguez et al. (2020), a regularizer is
integrated on a manifold, to smooth the update of the embed-
ding. Modeling the support set as a Grassmann manifold can
adaptively measure the distance between the query sample
and support set (Simon et al., 2020). The hyperbolic geome-
try is first studied in Khrulkov et al. (2020), revealing that the
hierarchical structure in the dataset also benefits the embed-
ding learning.
Results Tables 2 and 3 illustrate empirical results on four
datasets. We observe that our algorithms improve the few-
shot recognition performance as compared to their hyper-
bolic counterpart and other advanced methods. In addition,
the results from the Poincaré radial kernel, in general, exceed
the results from other kernels. For example, in 5-way 1-
shot setting, with Conv-4 backbone, the Poincaré radial
kernel outperforms the Hyperbolic ProtoNet (Khrulkov et
al., 2020) by 2.85, 7.60, 3.52 and 1.65 for miniImageNet,
CUB, tiered-ImageNet and FC100, respectively. Or in 5-way
5-shot setting, with the same backbone, the Poincaré radial
kernel brings the performance gain over the Hyperbolic Pro-
toNet (Khrulkov et al., 2020) by 4.15, 3.43, 4.91 and 3.06 for
miniImageNet, CUB, tiered-ImageNet and FC100, respec-
tively, clearly showing the potential and superiority of the
universal kernel with MKL protocol. The improvement can
also be made in the ResNet backbone, further indicating its
generalization.

5.3 Zero-Shot Learning

Problem setting Zero-shot learning (ZSL) aims to identify
objects that are unseen during the training phase (Akata et
al., 2015a; Xian et al., 2016). Formally, suppose we have a
seen set Ds and an unseen set Du . Specifically, the seen set,
Ds = {(vsi , lsi , asi ), i = 1, . . . , Ns}, contains the visual fea-
turevi ∈ R

dv , the semantic feature ai ∈ R
da for the seen class

lsi ∈ Ls . Similarly, the unseen set, Du = {(vui , lui , aui ), i =
1, . . . , Nu}, also contains unseen visual feature vui , unseen
semantic feature aui with the unseen class l

u
i ∈ Lu . It is noted

that Ls and Lu should be disjoint, i.e., Ls ∩ Lu = ∅. The
pipeline of the network for ZSL is illustrated in Fig. 4.

We then build a baseline network for the scenario of zero-
shot recognition. In the training phase, we randomly sample
Nb seen visual features asV = {v1, . . . , vNb }. All the seman-
tic features are projected to the visual space, denoted by
E = {e(a1), . . . , e(a|Ls |)}, where |Ls | denotes the number
of seen classes in the training set. In our implementation,
the embedding function (i.e., e(·)) is a simple two layer
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Table 2 Few-shot classification results on miniImageNet and CUB datasets with 95% confidence interval

Model Backbone miniImageNet CUB

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchingNet (Vinyals et al., 2016) Conv-4 43.56 ± 0.84 55.31 ± 0.73 61.16 ± 0.89 72.86 ± 0.70

ProtoNet (Snell et al., 2017) Conv-4 44.53 ± 0.76 65.77 ± 0.66 51.31 ± 0.91 70.77 ± 0.69

MAML (Finn et al., 2017) Conv-4 48.70 ± 1.84 63.11 ± 0.92 55.92 ± 0.95 72.09 ± 0.76

RelationNet (Sung et al., 2018) Conv-4 50.44 ± 0.82 65.32 ± 0.70 62.45 ± 0.98 76.11 ± 0.69

DN4 (Li et al., 2019b) Conv-4 51.24 ± 0.74 71.02 ± 0.64 53.15 ± 0.84 81.90 ± 0.60

DSN (Simon et al., 2020) Conv-4 51.78 ± 0.96 68.99 ± 0.69 - -

Hyper ProtoNet (Khrulkov et al., 2020) Conv-4 54.43 ± 0.20 72.67 ± 0.15 64.02 ± 0.20 82.53 ± 0.14

Poincaré tangent kernel Conv-4 55.61 ± 0.21 74.81 ± 0.16 66.14 ± 0.23 82.11 ± 0.15

Poincaré RBF kernel Conv-4 56.48 ± 0.20 76.09 ± 0.16 70.98 ± 0.22 85.21 ± 0.13

Poincaré Laplace kernel Conv-4 56.26 ± 0.20 75.35 ± 0.15 68.27 ± 0.23 84.64 ± 0.13

Poincaré binomial kernel Conv-4 56.82 ± 0.20 75.27 ± 0.15 69.05 ± 0.23 83.00 ± 0.14

Poincaré radial kernel Conv-4 57.28 ± 0.18 76.82 ± 0.15 71.62 ± 0.21 85.96 ± 0.14

Baseline (Chen et al., 2019) ResNet-18 51.75 ± 0.80 74.27 ± 0.63 65.51 ± 0.87 82.85 ± 0.55

Baseline++ (Chen et al., 2019) ResNet-18 51.87 ± 0.77 75.68 ± 0.63 67.02 ± 0.77 83.58 ± 0.54

RelationNet (Sung et al., 2018) ResNet-18 52.48 ± 0.86 69.83 ± 0.68 67.59 ± 0.58 82.75 ± 0.58

MAML (Finn et al., 2017) ResNet-18 49.61 ± 0.92 65.72 ± 0.77 69.96 ± 1.01 82.70 ± 0.65

MatchingNet (Vinyals et al., 2016) ResNet-18 52.91 ± 0.88 68.88 ± 0.69 72.36 ± 0.90 83.64 ± 0.60

ProtoNet (Snell et al., 2017) ResNet-18 54.16 ± 0.82 73.68 ± 0.65 71.88 ± 0.91 86.64 ± 0.51

SNCA (Wu et al., 2018) ResNet-18 57.80 ± 0.80 72.80 ± 0.70 - -

Hyper ProtoNet (Khrulkov et al., 2020) ResNet-18 59.47 ± 0.20 76.84 ± 0.14 72.86 ± 0.22 85.69 ± 0.13

Poincaré tangent kernel ResNet-18 59.91 ± 0.21 76.65 ± 0.16 73.52 ± 0.22 88.75 ± 0.11

Poincaré RBF kernel ResNet-18 60.91 ± 0.21 77.12 ± 0.15 75.79 ± 0.21 89.98 ± 0.11

Poincaré Laplace kernel ResNet-18 60.52 ± 0.21 77.33 ± 0.15 74.37 ± 0.21 89.08 ± 0.12

Poincaré binomial kernel ResNet-18 61.04 ± 0.21 77.01 ± 0.15 74.46 ± 0.22 89.28 ± 0.11

Poincaré radial kernel ResNet-18 62.15 ± 0.20 77.81 ± 0.15 76.02 ± 0.22 89.64 ± 0.12

† Indicates the network was self-implemented. 1st / 2nd best in “bold” / “(underline)”

Table 3 Few-shot classification results on tiered-ImageNet and FC100 datasets with 95% confidence interval.

Model Backbone tiered-ImageNet FC100

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Hyper ProtoNet† (Khrulkov et al., 2020) Conv-4 54.44 ± 0.23 71.96 ± 0.20 37.59 ± 0.19 51.76 ± 0.19

Poincaré tangent kernel Conv-4 54.73 ± 0.22 74.37 ± 0.18 37.66 ± 0.17 52.29 ± 0.18

Poincaré RBF kernel Conv-4 57.78 ± 0.23 76.11 ± 0.18 38.93 ± 0.18 54.40 ± 0.18

Poincaré Laplace kernel Conv-4 57.33 ± 0.22 76.48 ± 0.18 37.99 ± 0.17 53.54 ± 0.18

Poincaré binomial kernel Conv-4 56.72 ± 0.22 75.87 ± 0.18 38.32 ± 0.18 53.50 ± 0.18

Poincaré radial kernel Conv-4 57.96 ± 0.22 76.87 ± 0.18 39.24 ± 0.17 54.82 ± 0.18

Hyper ProtoNet† (Khrulkov et al., 2020) ResNet-18 62.28 ± 0.23 74.50 ± 0.21 40.64 ± 0.20 52.50 ± 0.30

Poincaré tangent kernel ResNet-18 63.31 ± 0.23 76.06 ± 0.23 42.18 ± 0.26 54.32 ± 0.32

Poincaré RBF kernel ResNet-18 64.52 ± 0.22 76.82 ± 0.21 43.84 ± 0.23 56.01 ± 0.30

Poincaré Laplace kernel ResNet-18 64.38 ± 0.22 77.16 ± 0.21 43.22 ± 0.23 55.47 ± 0.30

Poincaré binomial kernel ResNet-18 64.12 ± 0.23 76.44 ± 0.23 42.60 ± 0.24 55.08 ± 0.32

Poincaré radial kernel ResNet-18 65.33 ± 0.21 77.48 ± 0.20 44.12 ± 0.20 56.28 ± 0.26

† indicates the network was self-implemented. 1st / 2nd best in “bold” / “(underline)”
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Fig. 4 The pipeline of the deep network for zero-shot learning. X and
a denotes input images and attribute descriptors

MLP, with each layer stacking the linear transformation,
ReLU activation and batch normalization. Then the network
is trained by the following cross-entropy type loss:

Lzsl = − 1

Nb

Nb∑

i=1

log

(
exp (−‖(e(a∗) − vi‖)

∑|Ls |
j=1 exp

(−‖e(a j ) − vi‖
)

)

,

where a∗ shares the same label with vi . The baseline network
is conducted on Euclidean spaces.

Then in our work, the kernelized loss function for the
hyperbolic representations (i.e., e(a), v ∈ D

n
c ) can be modi-

fied as:

LK
zsl = − 1

Nb

Nb∑

i=1

log

(
g (k((e(a∗), vi ))

∑|Ls |
j=1 g

(
k(e(a j ), vi )

)

)

, (26)

where k(·, ·) indicates the kernel. Here, g(·) is exp mapping
if k(·, ·) is non-exponential type kernels. Otherwise, g(·) is
the identity mapping.

Four datasets, i.e., SUN (Patterson & Hays, 2012), CUB
(Wah et al., 2011), AWA1 (Lampert et al., 2013) and AWA2
(Akata et al., 2015a) are adopted to evaluate our algorithms
in the generalized ZSL (G-ZSL) setting. We report the top-
1 mean class accuracy (MCA) for both the unseen classes
(U) and the seen classes (S) and also calculate the harmonic
mean (HM) score, i.e. HM = 2 × U × S/(U + S). Please
refer to the Supplementary Material for more details about
the statistics of each dataset.
Related work The task of zero-shot learning (ZSL) connects
visual features and semantic features in a unified embedding
space (Akata et al., 2015a). Some initial solutions use the
low dimensional semantic space as the embedding space,
such that the visual feature is projected to the semantic space
(Lampert et al., 2013; Frome et al., 2013). However, it may
occur the hubness problem. Then alternative solutions are
proposed to embed both the semantic features and visual
features to a common intermediate space (Akata et al., 2015b;
Sung et al., 2018; Zhang&Saligrama, 2015). In recent years,
the pipeline that projects semantic features to visual space

becomes more popular, for the reason that it can mitigate the
hubness problem to a certain degree (Zhang et al., 2017). In
Liu et al. (2020), both semantic feature and visual feature
are benefited from the hyperbolic geometry in encoding the
hierarchical information of the dataset.
Results We first evaluate the effectiveness of our algorithms
by comparing them against the baseline. As shown in Table 4,
each Poincaré kernel brings a significant improvement to the
baseline network. For example, the simplest Poincaré tangent
kernel improves the HM value over the baseline by 6.1, 21.6,
21.9 and 14.1 for SUN, CUB, AWA1 and AWA2, respec-
tively. In addition, the powerful Poincaré radial kernel or
Poincaré Laplace kernel continues to improve the represen-
tation capacity, again showing the superiority of the kernel
design for hyperbolic representations.

To further verify the effectiveness of our approach, we
continue to compare our methods to a couple of popular ZSL
algorithms, including the state-of-the-art non-generative
methods (Zhang & Shi, 2019; Li et al., 2019a). We observe
that our Poincaré radial kernel or Poincaré Laplace kernel
achieve competitive results to the state-of-the-art methods
across four datasets. ZSL is a very challenging task as none
of the methods in Table 4 achieved the best performance on
HM value across all four datasets. That said, it is not easy
to distinguish the overall best model over four dataset. Thus,
to establish this objectively, we employ the Friedman test5

Demšar (2006) to compare the algorithms. As shown in the
last column of Table 4, the ranking list clearly shows that our
methods with the Poincaré radial kernel and the Poincaré
Laplace kernel are the best two options in general for the
ZSL task.

5.4 Person Re-identification

Problem setting Person re-identification (re-ID) is an impor-
tant application in the video/multi-camera surveillance task
(Fang et al., 2019, 2021c; Ye et al., 2021). It aims to retrieve
correct person images from a gallery dataset for the query
person of interest. The goal of training a re-ID machine is to
learn an embedding space, where the intra- (or inter-) person
variance is minimized (or maximized). The feature extractor
is trained by a classification task (see Fig. 5). To be spe-
cific, given a person image with associated identity (i.e., y),
the network first extracts its appearance representation (i.e.,
f ∈ R

n). The a fully connected layer (i.e., W ) is applied
to predict the identity of person and a softmax function is
used to normalize the output (i.e., p = softmax(W
 f )).
The probability of the person f w.r.t. its label y is denoted
by p(y| f ) = exp(〈w∗, f 〉)

∑N
j exp(〈w j , f 〉) . The training will minimize the

5 The Friedman test is a non-parametric measure for multiple datasets.
It ranks the algorithms for each dataset separately and calculates the
average ranks for each dataset as a ranking score.
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Table 4 Zero-shot recognition results on SUN, CUB, AWA1 and AWA2 datasets

Model SUN CUB AWA1 AWA2 Friedman test (rank)

U S HM U S HM U S HM U S HM

LATEM (Xian et al., 2016) 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 14.00 (14)

DEVISE (Frome et al., 2013) 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 12.00 (13)

DEM (Zhang et al., 2017) 20.5 34.3 25.6 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1 11.00 (10)

ALE (Akata et al., 2015a) 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 11.33 (12)

SP-AEN (Chen et al., 2018) 24.9 38.6 30.3 34.7 70.6 46.6 – – – 23.3 90.9 37.1 9.67 (9)

CRnet (Zhang & Shi, 2019) 34.1 36.5 35.3 45.5 56.8 50.5 58.1 74.7 65.4 52.6 78.8 63.1 3.25 (6)

Kai et al. (Li et al., 2019a) 36.3 42.8 39.3 47.4 47.6 47.5 62.7 77.0 69.1 56.4 81.4 66.7 3.67 (3)

Liu et al. † (Liu et al., 2020) 37.2 41.6 39.2 45.8 50.2 47.9 59.1 80.8 68.3 52.9 86.7 65.7 4.00 (4)

Baseline 22.8 38.0 28.5 18.6 44.6 26.3 29.8 76.4 42.9 25.5 76.4 38.2 11.00 (10)

Poincaré tangent kernel 29.4 42.0 34.6 40.8 58.1 47.9 52.3 85.2 64.8 37.1 88.5 52.3 3.67 (7)

Poincaré RBF kernel 37.0 43.3 39.9 44.6 57.8 50.3 59.0 84.6 69.5 42.9 89.5 57.9 3.00 (4)

Poincaré Laplace kernel 35.1 44.2 39.1 46.2 56.1 50.7 60.7 83.5 70.3 54.1 87.1 66.7 2.67 (2)

Poincaré binomial kernel 26.9 43.8 33.3 39.8 56.9 46.8 43.7 88.9 58.6 39.8 90.5 55.4 7.67 (8)

Poincaré radial kernel 38.2 44.8 41.2 45.8 57.6 51.0 60.2 86.7 71.1 48.2 90.3 62.8 2.22 (1)

U and S indicate the accuracy for unseen and seen classes, respectively. HM is the harmonic mean of U and S. The 1st / 2nd best are in “bold” /
“(underline)”, respectively. † indicates self-implemented algorithm

Fig. 5 The pipeline of the deep network for person re-identification. X
denotes the input pedestrian images

negative log-probability, as

Lreid = − log (p(y| f ))

= − log

(
exp(〈w∗, f 〉)

∑N
j exp(〈w j , f 〉)

)

.
(27)

The kernelized loss function for f ,w ∈ D
n
c can further

be obtained:

LK
reid = − log

(
g(k(w∗, f ))

∑N
j g(k(w j , f ))

)

, (28)

where k(·, ·) indicates the kernel and w∗, f ∈ D
n
c . Here,

g(·) is exp mapping if k(·, ·) is non-exponential type kernels.
Otherwise, g(·) is the identity mapping. Since the person
images in the test set are unseen during training, we use the
penultimate layer of the network as a feature embedding for
the person image in the inference phase.

Following the work (Khrulkov et al., 2020), ResNet-50,
pre-trained on ImageNet, is employed as a backbone network

and we also perform experiments across three dimensions,
i.e., 32, 64, 128, for the feature representation. BothMarket-
1501 (Zheng et al., 2015) and DukeMTMC-reID (Ristani
et al., 2016) pedestrian datasets are used to evaluate our
approaches. We include the statistics of each dataset in the
Supplementary Material. We use both mean average preci-
sion (mAP) and rank-1 accuracy of cumulative matching
characteristic (CMC) to evaluate our algorithms. Differ-
ent from FSL and ZSL, we use the generalized Poincaré
Laplace kernel in the re-ID experiment, as we observe that
the generalized Poincaré Laplace kernel achieves fairly good
performance compared to the Poincaré Laplace one.

Related work Establishing a highly-discriminative embed-
ding space is the core target for person re-ID task (Zheng et
al., 2016; Ye et al., 2021) and many recent works investigate
attention mechanisms to locate the discriminative regions
within pedestrian images (Li et al., 2018; Fang et al., 2021c;
Zhang et al., 2020). In Li et al. (2019), Li et al. propose
a harmonious attention network, in which a hard attention
block and a soft attention block are integrated to attend the
informative local and global areas. Works in Wang et al.
(2018); Fang et al. (2021c) further develop the full atten-
tion framework to preserve the spatial structure information
of images. The importance of such structural information is
also proved by the consistent regularization over the attention
blocks (Zhou et al., 2019). Other auxiliary information, e.g.,
attributes, poses, spatial relations are also adopted to create
effective attentionmechanisms (Zhang et al., 2020; Tay et al.,
2019; Su et al., 2017). Along with the attention mechanism,
optimizing over geometry constraints is also studied (Sun
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Table 5 Person re-ID results on
Market-1501 and
DukeMTMC-reID datasets

Model Dim Market-1501 DukeMTMC-reID

R-1 mAP R-1 mAP

Euclidean (Khrulkov et al., 2020) #32 68.0 43.4 57.2 35.7

Hyperbolic (Khrulkov et al., 2020) #32 75.9 51.9 62.2 39.1

Poincaré tangent kernel #32 75.4 53.3 63.9 42.5

Poincaré RBF kernel #32 76.0 54.3 67.3 46.3

g-Poincaré Laplace kernel #32 78.7 56.3 64.1 40.7

Poincaré binomial kernel #32 75.2 55.0 63.7 44.7

Poincaré radial kernel #32 79.6 57.8 66.8 46.1

Euclidean (Khrulkov et al., 2020) #64 80.5 57.8 68.3 45.5

Hyperbolic (Khrulkov et al., 2020) #64 84.4 62.7 70.8 48.6

Poincaré tangent kernel #64 85.8 68.0 73.9 54.2

Poincaré RBF kernel #64 85.2 65.7 73.8 55.8

g-Poincaré Laplace kernel #64 85.4 68.4 73.3 50.6

Poincaré binomial kernel #64 83.0 64.6 71.5 54.0

Poincaré radial kernel #64 86.4 68.7 73.6 55.2

Euclidean (Khrulkov et al., 2020) #128 86.0 67.3 74.1 53.3

Hyperbolic (Khrulkov et al., 2020) #128 87.8 68.4 76.5 55.4

Poincaré tangent kernel #128 89.4 74.1 78.6 60.9

Poincaré RBF kernel #128 88.9 73.5 78.4 62.2

g-Poincaré Laplace kernel #128 87.6 72.4 77.3 59.6

Poincaré binomial kernel #128 87.6 72.0 75.4 59.2

Poincaré radial kernel #128 90.2 74.6 79.8 63.8

The value in · denotes the result below the performance in Khrulkov et al. (2020). 1st / 2nd best in “bold” /
“(underline)”. g-Poincaré Laplace kernel indicates the generalized Poincaré Laplace kernel

et al., 2017; Khrulkov et al., 2020). In SVDNet (Sun et al.,
2017), the orthogonality is integrated into the classification
layer, thereby decoupling the feature correlations. Modeling
the embedding space in the spherical space or hyperbolic
space also shows superior properties of the curved geometry
(Khrulkov et al., 2020; Hao et al., 2019). The data distribu-
tion also contributes to the embeddings, and can be explored
via studying the point-to-set distance (Yu et al., 2018) or
set-to-set distance (Fang et al., 2021b).

Results We compare the proposed algorithms to methods in
Khrulkov et al. (2020). As shown in Table 5, we observe that
our algorithms bring positive effects to the retrieval perfor-
mance on both datasets, especially for the mAP value. In the
market-1501 dataset, most of our methods achieve compet-
itive performance compared to Khrulkov et al. (2020), and
the Poincaré radial kernel achieves the best performance. For
example, the performance gain of R-1 / mAP in 32, 64, 128
dimensions are 3.7 / 5.9, 2.0 / 6.0, 2.4 / 6.2, respectively.How-
ever, we also observe that the binomial kernel cannot perform
well in different embedding sizes. In the DukeMTMC-reID
dataset, our method could outperform its hyperbolic embed-
ding counterpart (Khrulkov et al., 2020) on both R-1 and
mAP values. In this dataset, the radial kernel and RBF kernel

are themost powerful two kernels. For example, the Poincaré
radial kernel improves the R-1 / mAP values over the work
(Khrulkov et al., 2020) by 4.6 / 7.0, 2.8 / 6.6 and 3.3 / 8.4 for
the dimension of 32, 64 and 128. While the Poincaré RBF
kernel improves the values by 4.6 / 7.2, 3.0 / 7.2, and 1.9 /
6.8 for the three dimensions, respectively.

5.5 DeepMetric Learning

Problem setting Similar to the person re-ID task, deep met-
ric learning (DML) is also required to create a latent metric
space, which is trained by a popular ranking task using triplet
loss (Schroff et al., 2015). Figure6 demonstrates the pipeline
of DML.

The optimizing object of the triplet loss is to minimize the
intra-class distance while enlarging the inter-class distance.
Given an anchor sample, i.e., Xa

i , a possible triplet can be
constructed as {Xa

i , X
+
i , X−

i }, where the positive sample X+
i

belongs to the same class of the anchor, while the class of the
negative sample X−

i is different to that of the anchor. A CNN
encodes input images to a latent metric space, with the cor-
responding feature embeddings, denoted by { f ai , f+

i , f−
i }.
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Fig. 6 The pipeline of the network for deep metric learning. The nota-
tions Xa, X+ and X− indicate the anchor sample, positive sample and
negative sample, and f a, f+ and f− are the associated feature embed-
dings

Then a triplet loss can be written as:

Ltri = 1

Ntri

Ntri∑

i=1

[
d+
i − d−

i + η
]
+, (29)

where d+
i = ‖ f ai − f+

i ‖2 and d−
i = ‖ f ai − f−

i ‖2. Here,
[y]+ = max(0, y) is the hinge loss andη > 0 is amargin. Ntri

is the number of triplet in a batch. Its kernelized counterpart
is formulated as:

LK
tri = 1

Ntri

Ntri∑

i=1

[ − k+
i + k−

i + η
]
+, (30)

where k+
i = k( f ai , f+

i ) and k−
i = k( f ai , f−

i ). In this study,
we set the margin η = 0.3 for all experiments.

We use Inception-V1 (Szegedy et al., 2015) with batch
normalization (Ioffe & Szegedy, 2015) as the feature extrac-
tor and evaluate our algorithms on the Stanford Cars
(CARS-196) dataset (Krause et al., 2013) (see Supplemen-
tary Material for its details). Following the common practice
in DML, we use normalized mutual information (NMI) and
recall@K (R@K) metrics in the evaluation stage.

Relatedwork In general,DMLrefers to intelligence approaches,
which learn data-dependent metric functions (Weinberger &
Saul, 2009), and it has been crucial in many computer vision
tasks. An early solution is on learning a Mahalanobis met-
ric (Xiang et al., 2008), which embeds the raw data to a
Mahalanobis pseudo metric space, thereby inferring the geo-
metrical structure of feature distribution. Modern machine
learning techniques study to explicitly optimize the distance
metric in the embedding space. In Schroff et al. (2015), triplet
loss, proposed by Schroff et al., takes into account the rela-
tive distance per triplet of samples. The Npair loss makes use
ofmore negatives for an anchor sample (Sohn, 2016). Instead
of mining the negative sample in Schroff et al. (2015), the
lifted structure loss (Song et al., 2016) samples the negative
sample by considering its distance to both the anchor and its
positive sample. In addition to the simple Euclidean distance,
angular loss learns a scale-invariant similarity metric using
the angle at the negative point (Wang et al., 2017). Ustinova

Table 6 Deep metric learning results on CARS-196 dataset

Model NMI R@1 R@2 R@4 R@8

Baseline 56.7 60.1 72.6 81.4 88.9

Poincaré tangent kernel 58.2 62.7 74.8 83.2 90.2

Poincaré RBF kernel 59.1 63.9 75.4 83.7 90.4

Poincaré Laplace kernel 58.9 63.1 73.8 82.6 89.3

Poincaré binomial kernel 58.2 62.1 74.3 82.1 89.3

Poincaré radial kernel 60.4 63.6 76.2 84.8 90.9

1st / 2nd best in “bold” / “_”. g-Poincaré Laplace kernel indicates the
generalized Poincaré Laplace kernel

et al. study the histogram loss, which pushes away the sample
with different classes by reducing the overlap between two
probability density functions (Ustinova & Lempitsky, 2016).
Results Table 6 shows the results in the study of DML. It
reveals that our Poincaré kernels can improve the accuracy
over the baseline, clearly showing the effectiveness of the ker-
nel methods for hyperbolic representations. Again, in DML,
the Poincaré radial kernel achieves the overall best perfor-
mance. It improves the baseline performance by 3.7 and 3.5
for NMI and R@1 values.

5.6 Knowledge Distillation

Problem setting Knowledge distillation (KD) is an efficient
method to train a small student network, under the super-
vision of a pre-trained larger teacher network (Hinton et
al., 2014). Such that the small student network can learn
the knowledge from the teacher network and be deployed
in the mobile devices. In the teacher-student network, the
output of the teacher network acts as ground truth to train
a student network (see Fig. 7). For a training image (e.g.,
X), the teacher network generates the prediction scores g =
[g1, g2, . . . , gN ]
. Then the student network first extract the
feature vector of input image as f ∈ R

n , and a fully con-
nected layer W = [w1,w2, . . . ,wN ] is used to produce the
predication, i.e. p = softmax(W
 f ) and each pi is given
by:

pi = exp(〈wi , f 〉/T )
∑N

j=1 exp(〈w j , f 〉/T )
, (31)

where T is the temperature. Then the KD loss function can
be formulated as:

Lkd = −
N∑

i=1

gi log(pi )

= −
N∑

i=1

gi log

(
exp(〈wi , f 〉/T )

∑N
j=1 exp(〈w j , f 〉/T )

)

.

(32)
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Fig. 7 The pipeline of teacher-student network for knowledge distilla-
tion. X denotes the input images

The kernelized KD loss for the hyperbolic representation
f ∈ D

n
c can be obtained as:

LK
kd = −

N∑

i=1

gi log

(
g(k(wi , f )/T )

∑N
j=1 g(k(w j , f )/T )

)

, (33)

where k(·, ·) indicates the kernel and wi , f ∈ D
n
c . Here,

g(·) is exp mapping if k(·, ·) is non-exponential type kernels.
Otherwise, g(·) is the identity mapping. As for the value of
temperature T , we stay consistent with the popular choice
for T = 4 across all experiments (Cho & Hariharan, 2019;
Zagoruyko & Komodakis, 2017).

We use the ResNet-20 as a teacher network and a simple
4-layer CNN as a student network. Table 7 illustrates the
CNN architectures for teacher and student networks.

We report the results on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky, 2009). The details of datasets are sum-
marized in the Supplementary Material. We use the top-1
mean accuracy to evaluate the networks.
Related work Designing an objective that pushes the stu-
dent network to mimic behaviors from the teacher network
is essential in the KD problem with the early attempt being
(Ba & Caruana, 2014). In Ba and Caruana (2014), the behav-
ior mimicking is realized by minimizing the L2 distance
of predictions. Its extension work by Hinton et al. explores
the KL-divergence as behavior measurement (Hinton et al.,
2014). It also shows that leveraging the predication from a
teacher network as a label to supervise the training for a small
size student network is better than using the origin one-hot
label. Besides behavior in prediction, the student network
also learns relational knowledge (i.e., distribution or correla-
tion of feature embeddings) from teachers (Park et al., 2019;
Peng et al., 2019; Liu et al., 2019). Recent studies also advo-
cate that spatial structure information also matters in KD.
Such structure information can be leaned by attention trans-
fer (Zagoruyko & Komodakis, 2017; Wang et al., 2020) or

feature similarity preservation (Yim et al., 2017; Tung &
Mori, 2019).
Results As shown in Table 8, we can again find that our
Poincaré kernels improve the accuracy over the baseline.
Specifically, the Poincaré RBF kernel brings the maximum
performance gain i.e., 3.1, on CIFAR-10, while the Poincaré
radial kernel achieves the best performance on CIFAR-100.

5.7 Self-Supervised Learning

Problem setting Self-supervised Learning (SSL) has gained
increasing attention in the learning community for its power
of learning representations from a large scale of data without
manual labeling. We follow the good practice of SimCLR
(Chen et al., 2020) for SSL experiments. The pipeline of
SimCLR is demonstrated in Fig. 8. For the i-th image in
a mini-batch, two different data augmentations are applied,
and a network encodes two images to a positive pair of rep-
resentations, i.e., [zi , z+i ]. In SimCLR, a projection head,6

denoted by h in Fig. 8, is further used on top of the rep-
resentations, i.e., f i = h(zi ) and f+

i = h(z+i ). Then the
contrastive learning objective can be given by:

Lcts = −
N∑

i=1

log
exp

(
sim( f i , f+

i )/T
)

∑N
j=1 exp

(
sim( f i , f j )/T

) , (34)

where T is the temperature and the sim(·, ·) : Rn × R
n →

R, sim(xi , x j ) = x

i x j

‖xi‖‖x j‖ .
In contrastive loss, the cosine distance is used as a simi-

larity measure. We can use the proposed kernels to replace
sim function in Eq. (34) to kernelize the contrastive loss. The
kernelized contrastive loss can be formulated as:

LK
cts = −

N∑

i=1

log
g(k( f i , f+

i )/T )
∑N

j=1 g(k( f i , f j )/T )
, (35)

where k(·, ·) indicates the kernel, and f i , f+
i ∈ D

n
c . Here,

g(·) is exp mapping if k(·, ·) is non-exponential type kernels.
Otherwise, g(·) is the identity mapping. In this study, we set
T = 0.07 as that in Chen et al. (2020).

We use ResNet-18 as a feature extractor. The protocol of
SSL experiments first uses contrastive loss to pre-train the
feature extractor. Then the representation quality is evalu-
ated by linear probing. We report the Top-1 test accuracy for
SSL on three datasets, i.e., STL-10,CIFAR-10 andCIFAR-
100. The representation power is evaluated by linear probing
(Chen et al., 2020). The details of datasets are summarized
in the Supplementary Material.

6 Following SimCLR, the projection head is a 2-layer MLP with ReLU
activation (i.e., 2048 → 2048 → ReLU → 128).
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Table 7 Network architecture
for knowledge distillation on
CIFAR-10 and CIFAR-100
datasets

Conv layer Teacher ResNet-20 Student 4-layer CNN

Conv1 conv, 3 × 3, 16 conv, 3 × 3, 16

Conv2

[
conv, 1 × 1, 16
conv, 3 × 3, 16

]
×3 conv, 3 × 3, 16

Conv3

[
conv, 1 × 1, 32
conv, 3 × 3, 32

]
×3 conv, 3 × 3, 32

Conv4

[
conv, 1 × 1, 64
conv, 3 × 3, 64

]
×3 conv, 3 × 3, 64

CIFAR-10 / 100 Global average pooling, 10
/ 100-classes, softmax

Global average pooling, 10
/ 100-classes, softmax

PNs (×10−6) 0.272 / 0.278 0.027 / 0.032

PNs indicates the parameter numbers

Table 8 Knowledge distillation results on CIFAR-10 / 100 datasets

Model CIFAR-10 CIFAR-100

Baseline 80.5 49.9

Poincaré tangent kernel 82.1 50.5

Poincaré RBF kernel 83.6 54.4

g-Poincaré Laplace kernel 83.2 53.9

Poincaré binomial kernel 81.6 51.8

Poincaré radial kernel 83.2 54.9

1st / 2nd best in “bold” / “(underline)”. g-Poincaré Laplace kernel indi-
cates the generalized Poincaré Laplace kernel

Fig. 8 The pipeline of SimCLR using the contrastive learning scheme.
d1 and d2 present two different data augmentations, applied to the same
image, thereby resulting in a positive pair, i.e., X and X+. On top of
the CNN architecture, a projection head h is used to project the feature
embedding to a new space for contrastive learning

Related work Learning via contrastive scheme is a natu-
ral idea to create image representations, and significantly
improves the representation power of SSL (Hjelm et al.,
2019; Chen et al., 2020; He et al., 2020; Chen & He, 2021).
The success of contrastive learning in SSL heavily relies on
methods to build positive samples for each image. In DIM,
the positive pair is defined as the global context feature and
the local patch feature in images (Hjelm et al., 2019). Sim-
CLR is a simple yet effective framework, where various
data augmentations are applied to an image as a positive

Table 9 Self-supervised Learning results on STL-10 / CIFAR-10 / 100
datasets

Model STL-10 CIFAR-10 CIFAR-100

SimCLR 73.62 69.37 40.88

Poincaré tangent kernel 74.23 71.08 42.95

Poincaré RBF kernel 74.57 70.43 43.68

g-Poincaré Laplace kernel 72.68 64.21 39.08

Poincaré binomial kernel 70.33 66.72 39.20

Poincaré radial kernel 74.97 70.92 44.03

The value in · denotes the result below the baseline network. 1st / 2nd
best in “bold” / “_”. g-Poincaré Laplace kernel indicates the generalized
Poincaré Laplace kernel

pair, for SSL (Chen et al., 2020). MoCo uses a momentum-
updated encoder to build positive pairs (He et al., 2020). In
the Siamese networks, the positive pair is created by simply
adding a projection head to the origin feature (Chen & He,
2021).
Results Table 9 shows the empirical results of SSL. We can
observe that the SSL is a very challenging task as only proper
kernels can improve the performance over the baseline. To be
specific, the Poincaré tangent kernel, Poincaré RBF kernel,
and Poincaré radial kernel consistently improve represen-
tation power on three datasets. The Poincaré radial kernel
achieves the maximum performance gain on STL-10 and
CIFAR-100, reading as 1.35 and 3.15 respectively, while
Poincaré tangent kernel brings the maximum performance
gain on CIFAR-10, with the value of 1.71.

However, the Poincaré Laplace kernel and Poincaré,
which work well in other embedding learning applications,
e.g., FSL, fail to work in SSL. They even degrade the per-
formance of the baseline. This situation indicates that not all
kernels with fixed formulation increase the discrimination
of features, and it is essential to develop the data-adaptive
kernels, like the Poincaré radial kernel in this paper.
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Fig. 9 Evaluation of the number M in Poincaré radial kernel

5.8 Further Studies

Number of kernels in the Poincaré radial kernel The formula-
tion of Poincaré radial kernel in Eq. (20) follows the multiple
kernel learning (MKL) scheme, with a good property that
each kernel component/weight can be learned depending
on the dataset. In this experiment, we study the number
of kernels in Eq. (20). We consider the few-shot learn-
ing task under 5-way 5-shot setting and use Conv-4 as the
backbone network. Four datasets, the miniImageNet, CUB,
tired-ImageNet and FC100, are used in this study. An obser-
vation is made in Fig. 9 that when M = 50, the Poincaré
radial kernel attains better performance consistently across
all datasets.

Our study above demonstrates that the proposed Poincaré
radial kernel achieves the best performance when M = 50.
To gain insights into the behavior of theweights, we visualize
the weight values am in Fig. 10. The plot reveals a long-tailed
distribution of weight values with respect to the orders of
the kernel components. We note that the higher-order com-
ponents, despite having smaller weights, play a crucial role
in enhancing the accuracy of the similarity measure, thus
contributing to the overall performance of the method. Addi-
tional visualizations of the weight values for different M are
provided in the supplementary material.
Activation function in the Poincaré radial kernel As dis-
cussed in Sect. 4.5, an activation function is required to
apply to the learned weights in Eq. (20), leading the pro-
posed Poincaré radial kernel being pd. In this context, we
study the impact of several candidates of activation func-
tions, e.g., ReLU(·), softmax(·) and sigmoid(·), and report
the results in Table 10. This analysis is studied on the few-
shot learning task with the miniImageNet dataset. Conv-4
is used as the backbone network. Table 10 shows that the
proposed Poincaré radial kernel can bring improvement over

Fig. 10 Visualization of the value of weights, i.e., am , in the Poincaré
radial kernel

Table 10 Effective of different activation functions

Model miniImageNet

5-way 1-shot 5-way 5-shot

Baseline 54.43 ± 0.21 74.81 ± 0.16

ReLU(·) 56.51 ± 0.19 75.62 ± 0.15

softmax(·) 55.88 ± 0.19 75.18 ± 0.16

sigmoid(·) 57.28 ± 0.18 76.82 ± 0.15

This study is conducted on the few-shot learning (FSL) task with the
miniImageNet dataset. Conv-4 is used as the backbone network. The
best result is in “bold”

the baseline with each of the activation functions, showing
that the proposed Poincaré radial kernel can work properly
once the pd property is satisfied. Among the activation func-
tions, the sigmoid(·) activation attains a better performance
than other activation functions. This observation enables us
to choose sigmoid, which normalizes the weights between 0
and 1, as the activation function in the Poincaré radial kernel.
Indefinite kernel vs. Positive definite kernel To the best of
our knowledge, our work is the first to develop pd kernels
in hyperbolic spaces. That said, indefinite hyperbolic kernels
are developed in Cho et al. (2019). As for the indefinite ker-
nel, we use theMinkowski inner product kernel, presented in
Cho et al. (2019) (see Supplementary Material for details).
We have evaluated the performance of our pd kernels and
the indefinite kernel for the task of 5-way 5-shot learning
across the miniImageNet, CUB, tired-ImageNet and FC100
datasets. Figure11 shows that the performance attained by
the indefinite kernel does notmatch that of pd kernels, clearly
showing the potential of pd kernels for hyperbolic represen-
tations.

Euclidean spaces vs. Hyperbolic spaces One may wonder
howuseful the hyperbolic spaces are and their kernels in com-
parison to simple Euclidean kernels. In the end, the Poincaré
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Fig. 11 The performance comparison between the indefinite kernel and
pd kernels for hyperbolic representations

Fig. 12 The performance comparison for kernels on Euclidean spaces
and hyperbolic spaces

ball is embedded in n-dimensional Euclidean spaces and
hence conventional kernels can be applied seamlessly. In
Fig. 12, we compare the proposed kernels against their
Euclidean counterparts again on the task of few-shot learn-
ing using the miniImageNet dataset. We observe: (1) the
kernel machines in both Euclidean spaces and hyperbolic
spaces bring performance gain to the deep neural network. (2)
The proposed hyperbolic kernels can outperform the vanilla
Euclideankernels significantly, again showing the reasonable
design of the proposed kernels.

Remark 5 In this section, extensive experiments are con-
ducted to evaluate the superiority of the proposed Poincaré
kernels, as well as the usage of hyperbolic geometry. This
can also be justified by the empirical observation that vari-
ous applications can benefit from a high curvature (i.e., c).
For example, in the person re-identification task, the curva-
ture of the Poincaré ball is 10−2 in our algorithms, while the

work in Khrulkov et al. (2020) sets it to 10−5, which makes
the Poincaré ball very flat. We believe our contribution is
necessary in the field of deep manifold learning.

6 Conclusion

This paper proposes a family of positive definite kernels
to embed hyperbolic representations in Hilbert spaces. To
define such kernels, we leverage the identity tangent space
of the Poincaré ball and further define valid positive defi-
nite kernels in identity tangent spaces. The proposed kernels
include powerful universal ones (i.e., the Poincaré RBF ker-
nel, the Poincaré Laplace kernel, the Poincaré binomial
kernel, and the Poincaré radial kernel). We evaluate the
effectiveness of the kernels in a variety of challenging appli-
cations, such as few-shot learning, zero-shot learning, person
re-identification, deep metric learning, knowledge distilla-
tion and self-supervised learning, and the empirical results
have shown positive results for embedding learning via the
kernels in hyperbolic spaces. Future works include exploit-
ing the proposed kernels to other applications (i.e., natural
language processing and graph neural networks). In addi-
tion, we have found that the effectiveness of the kernel is
data-dependent and we want to develop a rule for choosing
the right kernel for a given data.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01834-
6.
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