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Abstract
Modeling data relation as a hierarchical structure
has proven beneficial for many learning scenarios,
and the hyperbolic space, with negative curvature,
can encode such data hierarchy without distortion.
Several recent studies also show that the represen-
tation power of the hyperbolic space can be fur-
ther improved by endowing the kernel methods.
Unfortunately, the known kernel methods, devel-
oped in hyperbolic space, are limited by the adap-
tation capacity or distortion issues. This paper ad-
dresses the issues through a novel embedding func-
tion. To this end, we propose a curvature-aware iso-
metric embedding, which establishes an isometry
from the Poincaré model to a special reproducing
kernel Hilbert space (RKHS). Then we can further
define a series of kernels on this RKHS, includ-
ing several positive definite kernels and an indef-
inite kernel. Thorough experiments are conducted
to demonstrate the superiority of our proposals over
existing-known hyperbolic and Euclidean kernels
in various learning tasks, e.g., graph learning and
zero-shot learning.

1 Introduction
This paper studies a curvature-aware isometric embedding to
map the hyperbolic representations into an intermediate re-
producing kernel Hilbert space (RKHS), where a set of ker-
nels can be further developed.

In recent years, the hyperbolic space has shown its su-
periority to encode the data hierarchy, since the volume of
hyperbolic space increases exponentially with radius [Ganea
et al., 2018a; Ganea et al., 2018b]. This property enables
the hyperbolic space to encode the graph-structured or tree-
likeness data with arbitrarily low distortion in case of low di-
mension, and benefits a lot of data embeddings, e.g., language
data [Ganea et al., 2018a], visual data [Khrulkov et al., 2020;
Fang et al., 2023], graph data [Cho et al., 2019], etc.

To enjoy the representation power of the hyperbolic space,
various learning paradigms, including hyperbolic neural net-
works [Ganea et al., 2018b; Gulcehre et al., 2018; Shimizu et
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al., 2020] and hyperbolic kernel machines [Cho et al., 2019;
Fang et al., 2021], are developed in the hyperbolic space,
gaining substantial improvement over many AI applications.
In [Ganea et al., 2018b], the hyperbolic geometry is first inte-
grated into the deep neural network as the embedding space,
and some essential hyperbolic neural layers are developed to
work with the hyperbolic geometry. To make the hyperbolic
space benefit from the rich kernel theories, Cho et al. first
propose a hyperbolic polynomial kernel, an indefinite kernel
defined in the Lorentz model [Cho et al., 2019]. The proposed
kernel improves the SVM classification over graph and lan-
guage data. As the complementary concept of the indefinite
kernel, the positive definite (PD) kernels are further studied in
[Fang et al., 2021]. Fang et al. leverage the identity tangent
space to approximate the hyperbolic space and propose a set
of PD kernels in the tangent space. Those kernels show su-
perior performance on visual recognition tasks. However, the
fixed curvature of hyperbolic space limits the adaptation ca-
pacity of the kernel [Cho et al., 2019], or the employment of
the identity tangent space causes the distortion of hyperbolic
data [Fang et al., 2021].

The work in [Arcozzi et al., 2007] proposes a kernel map-
ping, which realizes the isometry from the unit Poincaré
model to a special RKHS. In other words, such a mapping is
able to address the distortion issue of embedding the hyper-
bolic data in Euclidean space1. Also, many existing success-
ful practices of hyperbolic space also show that the Poincaré
model can adapt different data by tuning the curvature [Ganea
et al., 2018b; Chami et al., 2019; Khrulkov et al., 2020;
Fang et al., 2021]. The analysis arises a question: can we
develop some valid kernels that can jointly preserve the data
structure in the hyperbolic space, while fitting the data adap-
tively?

We answer this question by developing a curvature-aware
isometric embedding, yielding the isometry to map data from
the Poincaré model to an RKHS. Then this RKHS, with Eu-
clidean structure, allows us to construct a series of new hyper-
bolic kernel functions, including PD and indefinite kernels.
Enjoying the property of the proposed curvature-aware iso-
metric embedding, our kernels can reduce the distortion of
working on hyperbolic data, and also improve the adaptabil-

1The RKHS can be understood as a high-dimensional (or even
infinite-dimensional) Euclidean space.
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ity to different data. These advantages generalize our kernels
to different practical applications.

The contributions of this paper are summarized as fol-
lows:

• We propose a curvature-aware isometric embedding that
realizes an isometry between the Poincaré model and an
RKHS. This mapping can preserve the rich structure of
the hyperbolic data, and adapt to different data.

• On top of the embedding function, we develop a se-
ries of hyperbolic kernels, including PD kernels and an
indefinite kernel. The PD kernels have the curvature-
aware hyperbolic linear kernel, the curvature-aware hy-
perbolic polynomial kernel, the curvature-aware hyper-
bolic RBF kernel, and the curvature-aware hyperbolic
Laplacian kernel, while the indefinite kernel is called the
curvature-aware hyperbolic Sigmoid kernel.

• Thorough experiments are performed on different learn-
ing scenarios (e.g., graph learning and zero-shot learn-
ing) to evaluate the superiority of the proposed kernels,
and the adaptation capacity to different data.

2 Preliminaries
2.1 Notations
Throughout the paper, we use Cn, Pn

c , Dn
c to denote the n-

dimensional complex space, n-dimensional Poincaré model
with curvature −c, n-dimensional open ball with radius
1/
√
c. It is worthy noted that we omit the n or c when n = 1

or c = 1 for simplicity. We also denoteH as an RKHS and K
as a reproducing kernel Kreı̆n space (RKKS). The matrices,
vectors and scalars are denoted by bold capital letters (e.g.,
X), bold lower-case letters (e.g., x) and thin letters (e.g., x),
respectively.

2.2 Hyperbolic Geometry
The hyperbolic space is a Riemannian manifold with con-
stant negative curvature [Ratcliffe, 1994]. Five isometric
models, including the Poincaré model, the Lorentz model,
the Klein model, the Half-space model and the Hemisphere
mode, are used to model the hyperbolic space [Cannon et al.,
1997]. In this work, we use Poincaré model, as in many ex-
isting works [Nickel and Kiela, 2017; Ganea et al., 2018b;
Fang et al., 2021]. The gyrovector space provides an elegant
framework to work with hyperbolic space analytically [Un-
gar, 2022], and the Möbius gyrovector space comes in handy
to work with Poincaré model [Ungar, 1998].
Poincaré model. The n-dimensional Poincaré model can be
characterized as

Pn
c = {z ∈ Cn : c‖z‖2 < 1, c > 0}, (1)

where Cn and−c represent the n-dimensional complex space
and curvature of the Poincaré model, respectively.
Möbius Gyrovector Space. A Möbius gyrovector space is
a gyrometric space with gyrometric, known as the Möbius
gyrodistance function which obeys the gyrotriangle inequal-
ity [Ungar, 2022]. It provides a set of algebraic formalism to
work for the Poincaré model. That said, one can enjoy from

the Möbius gyrovector space to perform the basic vector op-
erations, e.g., addition, subtraction etc. For any two points
zi, zj ∈ Pn

c , the Möbius addition is given by

zi ⊕n
c zj =

zi + zj
1 + c〈zj , zi〉

. (2)

The Möbius gyrodistance can be deduced as

d(zi, zj) = ‖zj 	n
c zi‖ = ‖zj ⊕n

c (−zi)‖, (3)

where 	n
c is the Möbius subtraction.

2.3 Isometry from the Unit Poincaré Model to an
RKHS

Isometry is a mapping that preserves the distance (or met-
ric) between two metric spaces [Coxeter and Greitzer, 1967].
Concretely, the equivalence between pseudo-hyperbolic dis-
tance of the unit Poincaré model and the metric, defined on an
RKHS, establish the isometry. In this section, we will show
the details of such an isometry realized by a kernel mapping.

Pseudo-hyperbolic Distance
The complex open unit ball Dn ∈ Cn, together with the
pseudo-hyperbolic distance and the automorphisms2, i.e.,
Möbius self-mappings, is the Poincaré model [Duren and
Weir, 2007; Rochberg, 2019]. That is, one can define the unit
Poincaré model Pn, with the pseudo-hyperbolic distance, by
utilizing the Möbius self-mappings [Duren and Weir, 2007].

When n = 1, the Möbius self-mapping on the unit
Poincaré disk is defined as the Möbius subtraction in the
Möbius gyrovector space [Duren and Weir, 2007]. Specifi-
cally, for zi, zj ∈ P, the mapping is given by

ϕzi(zj) = zi 	 zj . (4)

When n > 1, for zi, zj ∈ Cn let Pzi
(zj) denote the or-

thogonal projection of zj to the subspace [zi] = {λzi : λ ∈
C} spanned by zi, and Qzi(zj) = zj − Pzi(zj) be the pro-
jection onto the orthogonal complement of [zi]. We further
denote szi

= (1−‖zi‖2)1/2. Then the Möbius self-mapping
on Pn is formulated as

ϕzi(zj) =
zi − Pzi

(zj)− szi
Qzi

(zj)

1− 〈zj , zi〉
. (5)

Having the Möbius self-mappings at hand, one can de-
fine the pseudo-hyperbolic distance in the unit Poincaré ball,
given by

ρn(zi, zj) = ‖ϕzi(zj)‖, (6)
where zi, zj ∈ Pn. Then the Eq. (6) can be further trans-
formed to

ρn(zi, zj) =

√
1− (1− ‖zi‖2)(1− ‖zj‖2)

‖1− 〈zj , zi〉‖2
. (7)

Note that the Eq. (7) holds for both n = 1 and n > 1. In
other words, both the pseudo-hyperbolic distance for the unit
Poincaré disk and the unit Poincaré ball can be obtained by
the Möbius self-mappings.

2The automorphism can project the ball to itself. Properties of
the automorphism are in the supplementary material.
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Drury Arveson Hardy Space
For an n-dimensional open unit ball Dn ∈ Cn, a correspond-
ing Drury Arveson Hardy space, denoted by Dn, can be de-
fined as a RKHS on Dn [Arcozzi et al., 2007]. Specifically,
this is realized by a kernel function, given by

kD
n

(zi, zj) = 〈kzj
, kzi
〉 =

1

1− 〈zj , zi〉
, (8)

where zi, zj ∈ Dn and kz ∈ Dn is the kernel for the point z
in Dn.

Denote k̂z = kz

‖kz‖ as the unit vector in the direction of kz ,
one can define the metric for zi, zj ∈ Dn as follows:

δD
n

(zi, zj) =

√
1− ‖〈k̂zi

, k̂zj
〉‖2. (9)

Since kz is a vector in Dn, and the right side of Eq. (9) fits
the definition of a metric [Bellet et al., 2015], this metric can
also be understood as a distance between kzi and kzj in Dn.

In this Drury Arveson Hardy space, one can plug the kernel
mapping in Eq. (8) into Eq. (9), obtaining the formulation of
the DA metric as

δD
n

(zi, zj) =

√
1− (1− ‖zi‖2)(1− ‖zj‖2)

‖1− 〈zj , zi〉‖2
. (10)

By observing the Eq. (7) and Eq. (10), we can find that
the DA metric δD

n

on Dn equals to the pseudo-hyperbolic
distance ρn on Pn. In other words, the unit ball Dn with
DA metric δD

n

is the Poincaré model Pn [Rochberg, 2019].
Since δD

n

is also a distance metric between kzi
and kzj

, the
kernel mapping in Eq. (8) can be understood as an isometry
from the unit Poincaré model Pn to the Drury Arveson Hardy
space Dn, meaning that the data in the unit Poincaré model
Pn can be embedded into the RKHS without distortion.

3 Isometry from the Curvature-aware
Poincaré Model to an RKHS

Section 2 introduces the isometry, realized by a kernel func-
tion, which maps the data from the unit Poincaré model to
an RKHS. Since the isometric mapping can preserves the dis-
tance metric in two space, the distortion issue of embedding
the hierarchical data can be addressed. Also, recent studies
[Fang et al., 2021; Chami et al., 2019] have verified that the
curvature of the hyperbolic model influences the down-stream
tasks significantly. This suggests generalizing the isometry to
the Poincaré model with adaptive curvature.

In this section, we propose an curvature-aware isometric
embedding from the Poincaré model to an RKHS. The em-
bedding is realized by a curvature-aware kernel function. Fig-
ure 1 shows the process of this isometric-embedding. Specif-
ically, we first define a pseudo-hyperbolic distance ρnc on the
Poincaré model Pn

c , and then construct a new kernel kD
n
c

z on
the ball Dn

c . Given the kernel kD
n
c

z , a mapping from Dn
c to the

RKHS Dn
c is realized and a metric δD

n
c on the ball Dn

c can be
defined. Besides, the metric δD

n
c can also be viewed as a dis-

tance measure inDn
c and we can establish the equivalence be-

tween the pseudo-hyperbolic distance ρnc and the metric δD
n
c .

Therefore, using δD
n
c onDn

c as a bridge, an isometry from the
Poincaré ball to the RKHS can be established.

Figure 1: Isometry from the Poincaré model to an RKHS

3.1 Generalization of the Pseudo-hyperbolic
Distance in Pn

c

The pseudo-hyperbolic distance in the unit Poincaré model
is defined via the norm of Möbius self-mappings (see
Eq. (6)) [Duren and Weir, 2007]. To define such a pseudo-
hyperbolic distance in the curvature-aware Poincaré ball, one
needs to generalize the Möbius self-mapping from Pn to Pn

c .

Möbius Self-mappings
When n = 1, the Möbius self-mappings of the Poincaré disk
Pc is defined as the Möbius subtraction:

ϕc
zi(zj) =

zi − zj
1− cz̄izj

, (11)

where zi, zj ∈ Pc and z̄i means the complex conjugate of zi.
We further generalize the Möbius self-mapping from Pc to

Pn
c and propose the pseudo-hyperbolic distance of Pn

c in case
of n > 1. For zi, zj ∈ Dn

c , let P c
zi

(zj) be the orthogonal
projection of zj onto the subspace [zi] spanned by zi, and let
Qc

zi
(zj) = zj−P c

zi
(zj) be the projection onto the orthogonal

complement of [zi]. Therefore, it holds that: P c
zi

(zj) = 0

when zi = 0, and P c
zi

(zj) =
〈zj ,zi〉
〈zi,zi〉zi if zi 6= 0. Let sczi

=
√

1− czi2, we define the Möbius self-mappings as

ϕc
zi

(zj) =
zi − P c

zi
(zj)− sczi

Qc
zi

(zj)

1− c〈zj , zi〉
, zi ∈ Dn

c . (12)

Note that the Eq. (12) can be simplified to ϕc
zi(zj) =

zi−zj
1−cz̄izj

when n = 1.
Here are the properties of the proposed maps ϕc

zi
.

Theorem 1. For every zi ∈ Dn
c , ϕc

zi
has the following prop-

erties:

• ϕc
zi

(0) = zi, ϕc
zi

(zi) = 0.

• ϕc
zi

is a involution: ϕc
zi

(ϕc
zi

(zj)) = zj .

Proof. The proof is given in supplementary material.

According to Theorem 1, ϕc
zi

is a one-to-one map, and that
ϕc
zi

= (ϕc
zi

)−1. This proves that the Möbius self-mappings
are automorphisms.

Pseudo-hyperbolic Distance
With the Möbius self-mappings ϕc

zi
at our disposal, we can

come up with the pseudo-hyperbolic distance of the ball Dn
c ,

given by
ρnc (zi, zj) =

√
c‖ϕc

zi
(zj)‖, (13)

where zi, zj ∈ Dn
c .
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In this case, when n = 1, the pseudo-hyperbolic distance
is defined as

ρc(zi, zj) =
√
c
∣∣∣ zi − zj
1− cz̄jzj

∣∣∣ =
√
cd(zi, zj), (14)

where d is the Möbius gyrodistance (see Eq. (3)) and |.| rep-
resents the absolute value of the number. Therefore, the
pseudo-hyperbolic distance in Poincaré disk with curvature
−c can be rescaled by the Möbius gyrodistance between
the gyrovectors. When c = 1, it presents to the pseudo-
hyperbolic distance in the unit Poincaré disk.

Moreover, when n > 1, for zi, zj ∈ Dn
c , ϕc

zi
(zj) has the

following property:

√
c‖ϕc

zi
(zj)‖ =

√
1− (1− c‖zi‖2)(1− c‖zj‖2)

‖1− c〈zj , zi〉‖2
. (15)

It is obvious that when c = 1, it becomes the pseudo-
hyperbolic distance defined in the unit Poincaré ball. Besides,
the Eq. (13) is allowed to predigest to the equation as

ρc(zi, zj) =
√
c
∥∥∥ zi − zj

1− c〈zj , zi〉

∥∥∥, (16)

which can be obtained by rescaling the Möbius gyrodistance
between zi and zj in Eq. (3).

Given the analysis, we have the following theorem.
Theorem 2. The pseudo-hyperbolic distance of the ball Dn

c
has the properties:

• ρnc (zi, zj) ≥ 0 and ρnc (zi, zj) = 0 if and only if zi =
zj , since ϕzi(zj) = 0 only for zi = zj;

• ρnc (zi, zj) = ρnc (zj , zi);

• The triangle inequality takes strong form:

‖ρnc (zi, zk)− ρnc (zk, zj)‖
1− ρnc (zi, zk)ρnc (zk, zj)

≤ ρnc (zi, zj)

≤ ρnc (zi, zk) + ρnc (zk, zj)

1 + ρnc (zi, zk)ρnc (zk, zj)
for all zi, zj , zk ∈ Dn

c

Proof. The proof is given in supplementary material.

The Theorem 2 shows the pseudo-hyperbolic distance is a
true metric of the open ball Dn

c . Furthermore, endowed with
the pseudo-hyperbolic distance, the the open ball Dn

c is the
Poincaré model Pn

c .

3.2 RKHS with a Curvature-aware Kernel
In this section, we propose a new kernel function whose
induced RKHS has a distance corresponds to the pseudo-
hyperbolic distance in Poincaré model.

For zi, zj ∈ Dn
c , we define a curvature-aware kernel in the

form of

kD
n
c (zi, zj) = 〈kD

n
c

zj , k
Dn

c
zi 〉 =

1

1− c〈zj , zi〉
, (17)

where Dn
c = {z ∈ Cn : c‖z‖2 < 1, c > 0} and Dn

c is the
RKHS with the kernel kD

n
c

z . The kernel is PD and the proof
is shown in the supplementary material.

After proposing the kernel, we define a metric on the ball
similar to Eq. (9) in the form of

δD
n
c (zi, zj) =

√√√√1−
∥∥∥〈 kDn

c
zj

‖kD
n
c

zj ‖
,
k
Dn

c
zi

‖kD
n
c

zi ‖
〉
∥∥∥2

. (18)

Concretely, it can be written as

δD
n
c (zi, zj) =

√
1− (1− c‖zi‖2)(1− c‖zj‖2)

‖1− c〈zj , zi〉‖2
(19)

by plugging the kernel in Eq. (17) to Eq. (18).
When n = 1, the metric (18) can be simplified as

δDc(zi, zj) =
√
c
∥∥∥ zi − zj

1− cz̄izj

∥∥∥. (20)

Through comparing Eq. (20) with Eq. (14), we note
δDc(zi, zj) = ρc(zi, zj). Therefore, the metric is identified
with the pseudo-hyperbolic distance of the Poincaré disk with
curvature −c.

When n > 1, compare Eq. (19) with Eq. (15), we know
the metric δD

n
c (zi, zj) also equals with the pseudo-hyperbolic

distance ρnc (zi, zj). Therefore, the ball Dn
c with the metric

δD
n
c (zi, zj) is a Poincaré model Pn

c .
Furthermore, since (18) can also be viewed as distance in

the RKHS Dn
c by taking kD

n
c

z as a vector in Dn
c , the distance-

preserved kernel mapping from the Poincaré model Pn
c to the

RKHS with kernel kD
n
c (zi, zj) = 1/(1 − c〈zj , zi〉) realizes

an isometry.

4 Curvature-aware Hyperbolic Kernels
In this section, we propose to construct a set of kernels in hy-
perbolic spaces by leveraging the proposed curvature-aware
isometric embedding in Eq. (17).

4.1 Curvature-aware Hyperbolic Linear Kernel
We first come up with the simplest kernel in this context.
The embedding in Eq. (17) establishes the isometry from the
Poincaré model Pn

c and the RKHS Dn
c . That said, this em-

bedding can realize the linear kernel in Dn
c , and we term

it as curvature-aware hyperbolic linear (CHL) kernel . For
zi, zj ∈ Pn

c , the CHL kernel is given by

kCHL(zi, zj) = 〈kD
n
c

zj , k
Dn

c
zi 〉 =

1

1− c〈zj , zi〉
. (21)

4.2 Curvature-aware Hyperbolic Polynomial
Kernel

One popular kernel in the Euclidean space is the polynomial
(Poly) kernel, which can encode the high-order statistics of
the data. For xi,xj ∈ Cn, it can be expressed as

kPoly(xi,xj) = (〈xj ,xi〉+ b)d, b > 0, d > 0. (22)

From the formulation to Eq. (22), we can simply extend it in
the Poincaré model Pn

c . Specifically, the inner product, which
can be understood as the linear kernel in the Euclidean space,
in Eq. (22) can be replaced by Eq. (21), thus we can obtain
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the curvature-aware hyperbolic polynomial (CHPoly) kernel,
formulated by

kCHPoly(zi, zj) = (〈kD
n
c

zj , k
Dn

c
zi 〉+ b)d

= (
1

1− c〈zj , zi〉
+ b)d, b > 0, d > 0.

(23)

The proposed kernel is a PD one, and we have provided the
proof in the supplementary material.

4.3 Curvature-aware Hyperbolic RBF Kernel
In the Euclidean space, the radial basis function (RBF) kernel
is recognized as a powerful kernel due to it property of uni-
versal approximation [Smola and Schölkopf, 1998]. It takes
the form of

kRBF(xi,xj) = exp
(
− ‖xi − xj‖2

2τ2

)
, (24)

where τ > 0 is the bandwidth parameter of the RBF kernel.
It is difficult to extand the RBF kernel to the Poincaré model
since the RBF kernel derived from the geodesic distance in
the Poincaré model is not a valid PD kernel [Fang et al., 2021;
Jayasumana et al., 2015; Cho et al., 2019]. Fang et al. first
propose a PD RBF in hyperbolic space in case of using the
tangent space. In our work, we extend the RBF kernel in Dn

c ,
called curvature-aware hyperbolic RBF (CHRBF) kernel. It
can be formulated as

kCHRBF(zi, zj) = exp
(
−
‖kD

n
c

zi − k
Dn

c
zj ‖2

2τ2

)
, (25)

for τ > 0. It is worth noting that

‖kD
n
c

zi − k
Dn

c
zj ‖2

=kCHL(zi, zi) + kCHL(zj , zj)− 2kCHL(zi, zj).
(26)

Plug Eq. (26) into Eq. (25), we can obtain the full fumulation
of CHRBF kernel as

kCHRBF(zi, zj) = exp
(
− 1

2τ2

( 1

1− c〈zi, zi〉

+
1

1− c〈zj , zj〉
− 2

1− c〈zj , zi〉
))
.

(27)

Of note, in our formulation, the CHRBF kernel is also a valid
PD kernel.

4.4 Curvature-aware Hyperbolic Laplacian
Kernel

Another famous exponential-type kernel in the Euclidean
space is known as the Laplacian (Lap) kernel. Its formula-
tion is given by

kLap(xi,xj) = exp
(
− ‖xi − xj‖

τ

)
, τ > 0. (28)

Analogously, we can deduce the curvature-aware hyperbolic
Laplacian kernel (CHLap) kernel as

kCHLap(zi, zj) = exp
(
−
‖kD

n
c

zi − k
Dn

c
zj ‖

τ

)
, τ > 0. (29)

Following the process of develop the CHRBF kernel in
Eq. (27), one can yield the formulation of CHLap kernel as:

kCHLap(zi, zj) = exp
(
− 1

τ

( 1

1− c〈zi, zi〉

+
1

1− c〈zj , zj〉
− 2

1− c〈zj , zi〉
) 1

2

)
.

(30)

The PD property of CHLap kernel is also proven in the sup-
plementary material.

4.5 Curvature-aware Hyperbolic Sigmoid Kernel
The former proposed kernels are PD. As a complementary
concept of the PD kernel, the indefinite kernel has also been
studied in the learning community [Ong et al., 2004]. In
contrast to PD kernels, the indefinite kernel maps the data
to an RKKS with indefinite inner product [Ong et al., 2004].
In [Cho et al., 2019], an indefinite kernel has been investi-
gated and shows its effectiveness. This inspires us to further
develop an indefinite kernel using the proposed embedding(
Eq. (17) or Eq. (21)). In this case, we leverage the Sigmoid
(Sig) kernel to develop an indefinite kernel. For xi,xj ∈ Cn,
the Sig kernel can be expressed as

kSig(xi,xj) = tanh
(
γ〈xj ,xi〉+ θ

)
, (31)

where γ > 0 and θ < 0. This is an indefinite kernel [Bishop
and Nasrabadi, 2006]. Plug the Eq. 21 into Eq. 31, we can ob-
tain the curvature-aware hyperbolic Sigmoid (CHSig) kernel
for zi, zj ∈ Pn

c , as

kCHSig(zi, zj) = tanh
(
γ〈kD

n
c

zi , k
Dn

c
zj 〉+ θ

)
= tanh

( γ

1− c〈zj , zi〉
+ θ
)
,

(32)

where γ > 0 and θ < 0. Since the Sig kernel is an indefinite
kernel, the proposed CHSig kernel is also an indefinite ker-
nel, which maps the hyperbolic data from the Poincaré model
to an RKKS. The optimization algorithms in RKKSs can be
used to address the tasks in hyperbolic space [Loosli et al.,
2015; Xu et al., 2017].

5 Experiments
In this section, we conduct thorough experiments to evaluate
the superiority of the proposed kernels. Source code and Ap-
pendix are available at https://github.com/MMeiYang/Code-
and-Appendix-for-Expanding-the-Hyperbolic-Kernels-A-
Curvature-aware-Isometric-Embedding-View.

5.1 Graph Learning
Learning on the graphs has gained significant attention in
the learning community since the graph-structured data are
popular to model the message passing networks including
social networks, citation networks and communication net-
works [Xia et al., 2021]. We first evaluate the proposed
kernels over the graph data with existing hyperbolic kernels
and Euclidean kernels. The hyperbolic kernels include hy-
perbolic polynomial (HPoly) kernel proposed by [Cho et al.,
2019], hyperbolic tangent (HTang) kernel, hyperbolic RBF
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Dataset
Kernel Dim Hyperbolic Embedding Euclidean Embedding

CHL CHPoly CHRBF CHLap CHSig HTang HPoly HRBF HLap HBin EL EPoly ERBF ELap ESig

Fa
ce

bo
ok #2 84.31.0 82.01.8 77.50.9 80.10.7 86.50.5 63.30.6 66.62.8 74.31.0 74.81.2 67.51.3 61.40.2 66.00.5 67.00.4 67.30.3 70.70.5

#5 89.90.3 89.70.4 88.00.8 88.10.7 90.70.4 65.20.5 81.61.1 87.20.8 87.90.6 86.01.2 64.10.6 82.50.8 84.70.6 85.60.7 86.50.7
#10 90.60.4 90.60.3 88.40.6 88.80.3 90.80.4 74.00.8 86.51.1 88.20.7 88.50.5 88.41.4 75.80.9 86.40.4 86.80.8 86.70.6 88.90.4
#25 90.80.2 90.90.3 88.40.6 88.60.4 91.30.4 85.80.5 88.90.6 88.00.5 88.20.7 89.61.0 83.70.3 88.50.6 87.90.6 88.10.6 89.40.3

T e
rr

or
is

t #2 60.53.6 57.62.2 63.31.2 64.11.1 59.90.8 49.81.9 51.30.7 60.51.6 62.62.0 55.03.0 50.01.8 51.30.8 60.01.6 60.92.1 61.01.3
#5 68.11.1 68.41.3 67.52.1 67.92.1 67.61.9 49.51.8 52.81.3 66.32.1 67.22.0 67.42.1 52.50.7 56.21.3 62.12.3 63.81.5 61.51.4
#10 69.82.2 69.41.9 68.21.7 68.52.4 67.72.3 51.61.5 59.31.6 67.01.9 66.83.5 68.32.1 58.71.7 65.42.0 65.01.3 66.61.8 64.91.5
#25 68.62.8 69.12.0 66.91.3 68.01.4 67.81.9 53.31.4 60.81.7 66.41.9 67.01.2 67.01.5 60.32.1 66.11.5 62.12.7 63.22.3 65.21.9

W
ik

i #2 58.71.5 50.52.8 47.61.1 49.81.8 58.41.1 18.70.8 17.02.5 41.42.3 43.11.6 33.01.7 18.20.9 18.41.0 23.71.0 24.41.1 25.50.9
#5 71.10.6 69.41.1 66.40.8 67.11.1 70.90.8 30.53.9 58.41.2 65.11.1 66.31.6 60.51.3 26.62.6 45.51.8 57.61.4 58.51.4 62.20.6
#10 73.20.6 72.30.6 68.31.6 69.11.6 71.81.1 38.43.4 62.00.4 67.40.9 68.21.4 64.72.1 42.71.9 57.82.3 65.61.5 65.21.5 67.80.8
#25 73.61.0 73.10.5 69.70.9 71.00.9 72.10.6 59.90.7 67.51.6 69.71.0 69.81.3 66.10.8 58.41.8 64.61.5 68.61.5 68.11.3 70.70.8

A
C

#2 76.30.9 75.41.1 75.70.8 77.30.8 78.80.7 66.01.2 61.47.0 74.81.3 75.90.8 72.21.5 58.64.0 64.94.8 72.31.6 72.31.3 64.94.8
#5 86.30.8 85.90.8 85.50.8 85.11.1 86.71.0 75.91.4 79.10.8 85.11.0 85.11.4 84.10.9 68.42.5 71.63.3 79.00.8 79.20.6 71.63.3
#10 89.50.6 88.80.5 87.60.8 88.10.8 89.30.6 82.00.6 86.71.1 87.60.7 87.60.5 87.11.2 79.40.4 80.03.2 85.00.8 84.40.9 80.03.2
#25 89.60.5 89.30.4 87.50.5 87.80.7 89.70.4 85.40.4 87.70.8 87.10.7 87.00.7 87.50.7 81.60.8 83.41.2 86.80.7 86.80.6 83.41.2

C
or

a
M

L #2 69.00.5 68.50.9 68.51.0 69.20.8 70.30.6 38.21.6 47.80.4 67.90.6 69.00.7 58.71.3 39.73.4 45.92.0 57.00.7 57.70.6 60.40.4
#5 83.60.5 84.00.8 82.80.8 83.60.5 84.10.6 62.71.5 72.51.7 82.70.9 83.30.5 80.71.1 45.11.7 58.20.9 70.70.8 71.50.6 73.40.6
#10 86.00.2 85.80.7 84.60.3 85.10.4 85.80.5 72.30.9 80.80.6 84.30.6 85.00.6 83.70.5 62.60.8 71.51.1 76.20.8 77.20.8 77.10.4
#25 86.10.2 86.20.6 84.80.8 85.60.6 86.00.5 79.20.4 83.50.9 84.90.4 85.20.7 84.90.6 72.00.7 75.91.3 79.00.7 78.40.5 79.00.6

Avg. ACC. 78.3 77.3 75.7 76.6 78.3 60.1 67.6 74.8 75.4 72.6 58.0 65.0 69.9 70.3 70.2
Top1 Times 6 4 0 1 10 0 0 0 0 0 0 0 0 0 0

Table 1: Mean accuracy (%) of node classification on graph datasets including Facebook, Terrorist, Wiki, AC and Cora ML. The subscript of
each number indicates the corresponding standard deviation. We use bold to indicate the best result.

(HRBF) kernel, hyperbolic Laplace (HLap) kernel and hy-
perbolic Binomial (HBin) kernel in [Fang et al., 2021] and
the Euclidean kernels includes Euclidean linear (EL) ker-
nel, Euclidean polynomial (EPoly) kernel, Euclidean RBF
(ERBF) kernel, Euclidean Laplacian (ELap) kernel and Eu-
clidean Sigmoid (ESig) kernel.

Specifically, the graph are first mapped into the Poincaré
model for hyperbolic kernels, while the graph are mapped
into the Euclidean space for Euclidean kernels, and then the
graph nodes are classified by kernel SVMs. The details of the
SVM solvers for PD and indefinite kernels are in supplemen-
tary material.

Datasets and Evaluation Protocol
Five real-world graph datasets including Facebook [Rozem-
berczki et al., 2019], Terrorist [Zhao et al., 2006],
Wiki [Cucerzan, 2007], Amazon Electronics Computers
(AC) [Shchur et al., 2018], Cora ML [Bojchevski and
Günnemann, 2017] are used in this study. Both the hyper-
bolic space and the Euclidean space are employed as the em-
bedding space with 2, 5, 10, 25 dimensions. The details of
the datasets are provided in the supplementary material.

In addition, an one-vs-all (OVA) strategy is utilized to im-
plement multi-class classification and Platt scaling maps the
predicted scores on the hold-out data to probabilities for all
categories [Platt and others, 1999]. We use the mean clas-
sification accuracy (ACC) to measure the performance of all
the methods. Due to space limitation, other two performance
metrics including area under the ROC curve (AUC) and
macro-averaged area under precision recall curve (AUPR) are
reported in the supplementary material.

Experimental Results
We first compare our proposed hyperbolic kernel methods
with popular Euclidean kernel methods. The results are
shown in Table 1. We observe that each of our hyperbolic ker-
nels shows a great improvement against its Euclidean coun-
terpart. For example, our CHL, CHPoly, CHRBF, CHLap

and CHSig kernels improve the mean ACC by 20.3%, 12.3%,
5.8%, 6.3% and 8.1% compared with the Euclidean counter-
parts including EL, EPloy, ERBF, ELap and ESig kernels re-
spectively. This shows that the hyperbolic space is a better
option to encode the graph-structured data, and can improve
the representation power of the graphs.

Next, the state-of-the-art hyperbolic kernel methods are
employed as baseline to further demonstrate the superiority
of our proposed kernels. Table 1 illustrates that our meth-
ods also obviously improve classification performance com-
pared with existing hyperbolic kernel methods. For example,
even the CHRBF kernel with the lowest performance in our
proposed hyperbolic kernels improves the ACC value over
HTang, HPoly, HRBF, HLap and HBin kernels by 15.6%,
8.1%, 0.9%, 0.3%, 3.1%, respectively. Compared with the
HPoly kernel which fixes the curvature of hyperbolic space
as −1, the good performance of our proposed kernels on dif-
ferent datasets demonstrates that curvature-aware hyperbolic
kernels can improve the adaptability. In addition, compar-
isons with HTang, HRBF, HLap and HBin kernels further
demonstrate the superiority of our method, which shows that
the isometry from Poincaré model to the RKHS reduces the
distortion of mapping hyperbolic data to Euclidean space.

5.2 Zero-shot Learning
Zero-shot Learning (ZSL) portrays the problem of recog-
nizing the unseen object by matching its semantic fea-
tures [Akata et al., 2016; Xian et al., 2018], and can be
modeled as a cross-modality matching task. We follow the
practice in [Fang et al., 2021] to train the network and
the paradigm is shown in Figure 2. For a batch of im-
ages, e.g., X = [X1, . . . ,XN ], and all semantic embed-
ding, e.g., E = [E1, . . . ,EM ], as input, the visual fea-
tures (e.g., x = [x1, . . . ,xN ]) and semantic features (e.g.,
e = [e1, . . . , eM ]) are extracted by two neural networks, as
x = f(X) and e = g(E). Having two-modality of data at
hand, the network can be optimized by the alignment loss.
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Figure 2: The learning paradigm of the zero-shot learning task.

In the experiments, we follow the loss function of baseline
in [Fang et al., 2021] to optimize the network. More details
about the loss functions for ZSL are demonstrated in supple-
mentary material.

Datasets and Evaluation Protocol
We use CUB [Wah et al., 2011], AWA1 [Lampert et al., 2013]
and AWA2 [Akata et al., 2016] to evaluate the ZSL task. The
statistics of the dataset is provided in the supplemental ma-
terial. The model performance is calculated by the harmonic
mean (HM) score, i.e., HM = 2×S×U

U+S , where S and U denote
the mean accuracy of seen and unseen classes respectively.

Model CUB AWA1 AWA2
U S HM U S HM U S HM

LATEM [Xian et al., 2016] 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0
DEVISE [Frome et al., 2013] 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8

DEM [Zhang et al., 2017] 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1
ALE [Akata et al., 2016] 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9

SP-AEN [Chen et al., 2018] 34.7 70.6 46.6 - - - 23.3 90.9 37.1
CRnet [Zhang and Shi, 2019] 45.5 56.8 50.5 58.1 74.7 65.4 52.6 78.8 63.1

Kai et al. [Li et al., 2019] 47.4 47.6 47.5 62.7 77.0 69.1 56.4 81.4 66.7
HTang kernel [Fang et al., 2021] 40.8 58.1 47.9 52.3 85.2 64.8 37.1 88.5 52.3
HRBF kernel [Fang et al., 2021] 44.6 57.8 50.3 59.0 84.6 69.5 42.9 89.5 57.9
HLap kernel [Fang et al., 2021] 46.2 56.1 50.7 60.7 83.5 70.3 54.1 87.1 66.7
HBin kernel [Fang et al., 2021] 39.8 56.9 46.8 43.7 88.9 58.6 39.8 90.5 55.4

Baseline [Fang et al., 2021] 18.6 44.6 26.3 29.8 76.4 42.9 25.5 76.4 38.2
CHL kernel 43.3 58.3 49.7 51.2 84.7 63.8 44.5 90.8 59.8

CHPoly kernel 41.7 58.9 48.8 51.3 85.4 64.1 42.2 90.9 57.6
CHRBF kernel 45.0 56.7 50.1 56.3 82.7 67.0 45.1 90.1 60.1
CHLap kernel 45.2 56.1 50.1 53.4 88.9 66.7 44.9 90.9 60.1
CHSig kernel 46.9 56.5 51.3 59.3 87.2 70.6 69.2 73.5 71.3

Table 2: Zero-shot recognition results (%) on the CUB, AWA1,
AWA2 datasets. The harmonic mean (HM) of classification accu-
racy of unseen classes (U) and seen classes (S) are reported. We use
bold to indicate the best result.

Experimental Results
We first evaluate our methods by comparing them with the
baseline. As shown in Table 2, all our kernels show obvious
improvements to the baseline. Concretely, compared with the
baseline, even proposed simplest CHL kernel improve 23.4%,
20.9% and 21.6% on HM for CUB, AWA1 and AWA2. Be-
sides, the powerful indefinite CHSig kernel further improves
the accuracy of ZSL, which demonstrates the superiority of
hyperbolic kernel for representation learning.

In addition, to further show the superiority of our method, a
series of ZSL methods are applied for comparison, including
the non-generative algorithms [Zhang and Shi, 2019; Li et
al., 2019]. We note that our proposed CHSig kernel yields
the best results on all datasets.

Finally, we compare our methods with the state-of-the-art
methods with hyperbolic kernels for ZSL [Fang et al., 2021].

We observe from Table 2 that our methods are still very com-
petitive compared with the existing hyperbolic kernel meth-
ods. In particular, our CHSig kernel outperforms existing
methods across all 3 datasets, clearly showing the superior-
ity of the proposed kernels.

5.3 Further Studies
In this part, we study the effect of the curvature of the
Poincaré ball. We conduct this study in the graph learning
task. Specifically, the Facebook dataset and five kernels, e.g.,
CHL kernel, CHPoly kernel, CHRBF kernel, CHLap kernel,
and CHSig kernel, are used in this analysis. In the experi-
ments, we set c to {2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21,
22} while the curvature value is represented as −c. Figure 3
shows the results. We can observe that: (1) In the regime of
the small c value, e.g., c < 0.5, the overall trend of classi-
fication accuracy of the all kernels is leveled off. (2) How-
ever, for PD kernels, it also shows that a large value of the c
will degrade the classification performance. (3) The indefi-
nite kernel, i.e., is insensitive to the curvature, indicating its
superiority and robustness. This study indeed shows the dis-
crimination of the Poincaré model can benefit from the cur-
vature.

Figure 3: The trend of classification performance of curvature-
aware hyperbolic kernels with curvature variation. The experiments
are implemented on the Facebook embedded in 10-dimensional
Poincaré model. The coordinates on the horizontal axis represent
the value of c and the coordinates on the vertical axis represent the
value of ACC.

6 Conclusion
This paper proposed a family of hyperbolic kernels with a
new curvature-aware isometric embedding function. This
embedding was realized by a kernel mapping, which pro-
jected the hyperbolic space to an RKHS. Then we developed
a set of kernels including several PD kernels and an indefi-
nite kernel. The proposed kernels can adapt to different data
regimes and preserve the raw data’s hierarchical structure.
Extensive experiments on graph learning and zero-shot learn-
ing evaluate the effectiveness of the kernels. We believe the
proposed isometric-embedding function can construct more
powerful kernel machines.
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