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Abstract. Learning and generalizing to novel concepts with few samples
(Few-Shot Learning) is still an essential challenge to real-world applica-
tions. A principle way of achieving few-shot learning is to realize a model
that can rapidly adapt to the context of a given task. Dynamic networks
have been shown capable of learning content-adaptive parameters effi-
ciently, making them suitable for few-shot learning. In this paper, we
propose to learn the dynamic kernels of a convolution network as a func-
tion of the task at hand, enabling faster generalization. To this end, we
obtain our dynamic kernels based on the entire task and each sample, and
develop a mechanism further conditioning on each individual channel and
position independently. This results in dynamic kernels that simultane-
ously attend to the global information whilst also considering minuscule
details available. We empirically show that our model improves perfor-
mance on few-shot classification and detection tasks, achieving a tangible
improvement over several baseline models. This includes state-of-the-
art results on four few-shot classification benchmarks: mini-ImageNet,
tiered-ImageNet, CUB and FC100 and competitive results on a few-shot
detection dataset: MS COCO-PASCAL-VOC.

1 Introduction

Despite the great success of the modern deep neural networks (DNNs), in many
cases, the problem of adapting a DNN with only a handful of labeled data
is still challenging. Few-Shot Learning (FSL) aims to address the inefficiencies
of modern machine learning frameworks by adapting models trained on large
databases for novel tasks with limited data [15,34,35,48,62].

Early approaches of FSL learned a fixed embedding function to encode sam-
ples into a latent space, where they could be categorized by their semantic rela-
tionships [47,48,62]. However, such fixed approaches do not account for category
differences [39], which may exist between already learned tasks and novel tasks.
Ignoring these discrepancies can severely limit the adaptability of a model as
well as its ability to scale in the FSL setting. Although methods that adapt em-
beddings [33,52,61] attempt to address this issue, they still utilize fixed models
which lack full adaptability and are constrained to previously learned tasks. An-
other group of approaches, such as [15,35], adapt models with a few optimization
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Fig. 1: Typical FSL models learn fixed embeddings, which are not flexible enough
to rapidly adapt to novel tasks. Our method instead uses a dynamic kernel
network to produce a set of dynamic parameters which are both instance and
task-aware

steps. Given the complexity of the loss landscape of a DNN, such methods come
short compared to metric-based solutions [56].

Dynamic kernel approaches have been shown to be computationally effi-
cient [64] relative to optimization-based solutions, resulting in the models ca-
pable of encoding the novel information at the parameter level [22]. A very re-
cent study [58] showed that dynamic kernel methods are effective when applied
to FSL via the learning of input-conditioned filters, enabling the realization of
adaptive models; a key limitation of this dynamic kernel method is that only the
per-class level information is utilized via class prototypes.

Arguably, when learning new tasks with sparse data, it is vital to fully uti-
lize information on both an instance and task-level for efficiency. As an example,
when given the task of differentiating between dog breeds (Fig. 1), both task
and instance-level information is required; it is important that we are sensi-
tive enough to distinguish the minuscule details between different dog breeds
(instance-level), yet can still focus on the global knowledge required to filter out
irrelevant, non-task related objects (task-level).

In this paper, we propose a novel, dynamic approach for FSL tasks. Our
method is realized by a dynamic kernel that can encode both instance-level and
task-level features via jointly learning a dynamic kernel generator and a context
learning module. The dynamic kernel generator adaptively produces an instance
kernel by exploiting the information along the spatial and channel dimensions
of a feature map in a decoupled manner. It further incorporates information
from the frequency domain resulting in a rich set of descriptive representations.
The context learning module refines the support features into a task-specific
representation which is used to produce the task-specific kernel. The resulting
instance and task-specific kernels are fused to obtain a dynamic kernel which is
INStance and Task-Aware (INSTA). Our method differentiates from approaches
such as FEAT [61] and GLoFa [33] by learning a set of dynamic parameters
adaptive to the novel tasks instead of employing fixed models during inference.
Furthermore, in contrast to optimization-based methods [15], our approach can
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adapt the model parameters without the requirements of backpropagation during
the inference stage. We offer the following contributions:

– We propose a novel FSL approach to extract both instance and task-specific
information using dynamic kernels.

– We offer the first FSL framework capable of being evaluated on both classi-
fication and detection tasks.

– Empirically, we offer substantial improvements over several FSL baselines,
including optimization-based and metric-based approaches.

2 Related Work

The family of few-shot learning literature is broad and diverse. However, those
related to this work are mainly the family of optimization-based methods [4,15–
17,26,35,41,46,65] and metric-based methods [5, 12,45,47,48,52,61,62].
Optimization based methods.Optimization-based methods such as MAML [15]
or Reptile [35] focus on learning a set of initial model parameters that can gener-
alize to new tasks (or environments) with a small number of optimization steps
and samples without severe over-fitting. Furthermore, in most cases, this group
of methods present a framework trained with a bi-level optimization setting [17],
which provides a feasible solution to adapt the model to the test set from the
initialized model.

Our proposed framework is similar to the optimization-based methods [1, 2,
7,27,32] in the sense that the model parameters are task-adaptive. However, our
solution does not require backpropagation during inference to achieve so. Fur-
thermore, our method can be incorporated with optimization-based methods,
and empirically we observed that such construction yields performance improve-
ment. This will be demonstrated in § 4.
Metric-based methods. In few-shot learning literature, the metric-based meth-
ods aim to define a metric to measure the dis/similarity between samples from a
few observations [9,24,30,31,42,57,59,63]. ProtoNet [47] achieves this by learning
a fixed latent space where the class representations (i.e., prototype), obtained by
averaging the features from the same class, are distinctive for different classes.
DeepEMD [62] formulates the query-support matching as an optimal transport
problem and adopts Earth Mover’s distance as the metric. One commonality
in the aforementioned methods is the fact that all employ a fixed embedding
space when facing novel tasks, which essentially limits their adaptability. On the
other hand, many previous methods suggested to adapt the embeddings to the
novel tasks [14, 19, 33, 36, 44, 50, 61]. CTM [28] proposes to produce a mask to
disregard the uninformative features from the support and query embeddings
during inference. MatchingNet [52] uses a memory module to perform sample-
wise embedding adaptation and determines the query label by a cosine distance.
TADAM [36] proposes to learn a dynamic feature extractor by applying a linear
transformation to the embeddings to learn a set of scale and shift parameters.
FEAT [61] and GLoFa [33] provide an inspiring way to perform the embedding
adaptation using a set function.
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Our contribution is complementary to the aforementioned methods. We aim
to learn a set of dynamic kernels via exploiting the instance and task-level infor-
mation according to the task at hand. This results in a more distinctive and
descriptive representation, which effectively boosts the performance of these
methods directly relying on constructing a metric space.
Dynamic kernels. The application of dynamic kernels solutions within the
domain of few-shot learning is less explored in the current literature. However, it
has been demonstrated useful when labels are abundant [6,8,18,21,49,51,54,64].
Zhou et al . [64] have proposed to use decoupled attention over the channel and
spatial dimensions. This results in a content-adaptive and efficient method that
provides a feasible way to achieve task-adaptive FSL.

To leverage the effectiveness of the dynamic kernel into few-shot learning
tasks, [58] propose to learn dynamic filters for the spatial and channels separately
via grouping strategy. The resulted kernels are then applied to the query to
produce a support-aligned feature. Due to the usage of grouping, the performance
might sacrifice for efficiency [64]. Inspired by these methods, our INSTA produces
dynamic kernels that are both instance-aware and task (or episodic)-aware while
also incorporating valuable frequency patterns; as such, our method produces
more informative and representative features.

3 Method

In this section, we introduce our proposed INSTA. Note that while we present our
method in terms of few-shot classification, the proposed approach is generic and
can be seamlessly used to address other few-shot problems, including structured-
prediction tasks such as few-shot object detection (see § 4.2 for details).

3.1 Problem Formulation

In what follows, we will give a brief description of the problem formulation for
few-shot classification. The vectors and matrices (or high-dimensional tensors)
are denoted by bold lower-case letters (e.g ., x) and bold upper-case letters (e.g .,
X) throughout this paper. FSL aims to generalize the knowledge acquired by a
model from a set of examples Dtrain = {(Xi, yi)|yi ∈ Ctrain}, to novel and unseen
tasks Dtest = {(Xi, yi)|yi ∈ Ctest}, Ctrain ∩ Ctest = ∅, in a low data regime.

We follow the meta-learning protocol to formulate FSL with episodic training
and testing. Specifically, an episode E consists of a support set X s = {(Xs

ij , y
s
i )|i =

1, . . . , N, j = 1, . . . ,K, ysi ∈ Ctrain}, where Xs
ij denotes the j-th sample in the

class ysi and the query set X q = {(Xq
i , y

q
i )|i = 1, . . . , N}, where Xq

i denotes a
query example 1 sampled from class yqi (the test setup is the same as training
but the episodes are sampled from Dtest). Such a formulation is known as N -way
K-shot, where the goal is to utilize the support samples and their labels to ob-
tain Θ∗, the optimal parameters of the model, such that each query is classified

1 Without losing generality, we use one sample per class as a query for presenting our
method. In practice, each episode contains multiple samples per query class.
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Fig. 2: The framework of our method. Given the support set X s and the query
sample Xq, the backbone network fθ first encodes them into a representation
space as S = {S11, . . . ,SNK} and Q. Then a dynamic generator fω is used
to produce an instance kernel for each support sample. Meanwhile, a context
learning module fϕ is used to refine and aggregate the context of the entire
support feature maps to produce a task-specific representation, which is then
used as the input of fω to obtain the task-specific kernel. Note the instance kernel
and task-specific kernel share the parameters across fω. Finally, the INSTA
dynamic kernel that is both instance-aware and task-aware is applied to the
support feature maps, while only the task-specific kernel is applied to the query
feature map to obtain the adapted representations

correctly into one of classes in the support set. The object of network training
follows that:

Θ∗ = argmin
Θ

∑
Xq

i ∈X q

L(fΘ(Xq
i |X

s), yqi ), (1)

where fΘ represents the entire model parameterized by Θ.

3.2 Model Overview

We first provide an overview of our model (see the sketch of the pipeline in Fig. 2).
Overall, our framework is composed of three modules, the backbone network
fθ, the dynamic kernel generator fω, and the context learning module fϕ. The
backbone network first extracts the feature maps from the input images, followed
by a two-branch dynamic kernel network to obtain our proposed dynamic kernels.
Specifically, the dynamic kernel generator independently refines the features in
the support set to produce the instance kernel (i.e., Gin) in one branch. In
another branch, the context learning module fϕ first produces a task-specific
representation by refining and summarizing the features from the entire support
set, which is then used as the input of the dynamic kernel generator to produce
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the task-specific kernel (i.e., Gta) adaptively. The dynamic kernel generator is
shared across these two branches to generate the instance kernel and the task-
specific kernel. Such a two-branch design enables the network to be aware of
both the instance-level feature and global context feature of the support set.
The design choice is justified in § 4. Finally, both the instance and task-specific
kernels are fused and employed to boost the discrimination of instance features in
the support set. The task-specific kernel is applied to the query feature maps for
refining the representation without extracting a query instance kernel. Given the
adapted support and query features, any post-matching algorithm (e.g ., metric-
based or optimization-based FSL) can be employed seamlessly to achieve the
few-shot classification task.

3.3 Dynamic Kernel Generator

In this part, we provide a detailed description of the dynamic kernel generator.
The central component of our model is the dynamic kernel generator, which
receives a feature map as input and produces a kernel adaptively. An essential
problem one may face is that the feature map extracted by modern DNNs usually
has a large size (e.g ., 640 × 5 × 5 for ResNet-12). As such, we need to identify
cout × c × k × k amount of parameters for the dynamic kernel, where the cout
is the output channel size (we consider c = cout in our paper), c is the input
channel size, and k is the kernel size. This poses a significant issue since the
generated dynamic kernel is prone to overfitting given the limited data of FSL.
To tackle this problem, we consider designing our dynamic kernel generator in
a decomposed manner [64]. As such, we develop a channel kernel network and
a spatial kernel network to produce a kernel for each channel and each spatial
location independently. This design exploits the information per data-sample to
a large extent while reducing the number of parameters of a dynamic kernel,
which greatly fits the low data regime of FSL. Fig. 3 illustrates the pipeline
of the proposed dynamic kernel generator. In what follows, we detail out the
operations of the channel and spatial kernel networks.
Channel Kernel Network. Given a feature map S ∈ Rc×h×w, where c, h,
and w denote the size of channel, height and width, a common practice to re-
alize the channel kernel network follows the SE block [20], as done for example
in [8]. In the SE block, global average pooling (GAP) is performed over the
feature map to encode the global representation, which is fed to the following
sub-network for channel-wise scaling. The drawback of this design is that the
GAP operator mainly preserves the low frequency components of the feature
map, as shown in [37] (averaging is equivalent to low-pass filtering in the fre-
quency domain). Thus, GAP discards important signal patterns in the feature
map to a great degree. Clearly, low-frequency components cannot fully char-
acterize the information encoded in a feature map, especially in the low data
regime. We will empirically show this in § 4.3. To mitigate this issue, we opt
for multi-spectral attention (MSA) to make better use of high-frequency pat-
terns in the feature map. Given a feature map S, we equally split the feature
map into n smaller tensors along the channel dimension (in our experiments
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n = 16), as {S0,S1, . . . ,Sn−1|Si ∈ R c
n×h×w}. Then, each channel of the tensor

Si is processed by a basis function of a 2D-Discrete Cosine Transform (DCT)
following the work of Qin et al . [37]. As a result, we obtain a real-valued fea-
ture vector in the frequency domain as τ i = DCT(Si), τ i ∈ Rc/n, which is the
frequency-encoded vector corresponding to Si. The frequency-encode vector for
S is obtained by concatenating τ is as:

τ = concat(τ 0, τ 1, . . . , τn−1), (2)

where τ ∈ Rc. Please refer to the supplementary material for the theoretical
aspects of the MSA module. As compared to the global feature obtained by
GAP, frequency-encoded feature τ contains more diverse information patterns,
which brings extra discriminative power to our model. This will be empirically
discussed in § 4.3.

Once we obtain τ , a light-weight network is used to produce the channel
kernel values adaptively. This network is realized by a two-layer MLP (or 1× 1
convolution), with architecture as c → σ×c → ReLu → k2×c, where 0 < σ < 1,
and k controls the size of receptive field in the dynamic kernel (practically, we
set σ = 0.2 and k = 3). Then we reshape the output vector into a c × k × k-
sized tensor, denoted by Gch. We can obtain the final channel dynamic kernel
Ĝch ∈ Rc×h×w×k×k via applying batch normalization (BN) and spatial-wise
broadcast to Gch.

c,1,1 σ×c,1,1
MSA ReLU

c,h,w

c,k,k

c,h,w,k,k

c,h,w,k,k

BN

broadcast

broadcast

BN
Spatial Kernel Network

Channel Kernel Network

1×1
conv

1×1
conv

1×1
conv

k×k,h,w h,w,k,k

reshape

Fig. 3: The architecture of dynamic kernel generator. We adopt a decomposed
architecture to produce dynamic kernels for the channels and spatial dimensions
independently. This results in a light-weight kernel, which greatly fits the low-
data regime of FSL

Spatial Kernel Network. Independent to the channel kernel network, our
spatial kernel network adaptively produces a convolution kernel Gsp

a,b ∈ Rk×k

for each spatial location of a feature map (i.e., S:,a,b). This is achieved by using
a 1 × 1 convolution layer, with the architecture of (c, k2, 1, 1) and the reshape
operation. Therefore, the spatial kernel Gsp for all the spatial locations of a
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feature map S has a size of h×w×k×k. We then obtain the final spatial dynamic
kernel Ĝsp ∈ Rc×h×w×k×k by applying the BN and channel-wise broadcast to
Gsp.

Finally, to unify the channel and spatial dynamic kernels, we apply the
Hadamard product between the Ĝch and Ĝsp to obtain the dynamic kernel
Gdy as:

Gdy = Ĝsp ⊙ Ĝch, (3)

where Gdy ∈ Rc×h×w×k×k. Notably, the number of parameters of our dynamic
kernel is much less than a normal convolution kernel (c×h×w×k2 ≪ cout×c×k2

given cout = c = 640 and h = w = 5).

3.4 Dynamic Kernel

In this part, we discuss the process of obtaining the proposed INSTA dynamic
kernel, which consists of the instance kernel and the task-specific kernel.
Instance Kernel. We defined the instance kernel as the dynamic kernel ex-
tracted from each support feature map. Formally, given the support set im-
ages X s = {Xs

11, . . . ,X
s
NK |Xs

ij ∈ RC×H×W }, where C, H, and W indicate
the channel, height, and width of an image, respectively, the backbone net-
work first extracts a feature map from each image, as S = fθ(X s), with S =
{S11, . . . ,SNK |Sij ∈ Rc×h×w}. The feature map for the query sample can be
obtained in a similar fashion, as Qi = fθ(X

q
i ). We then use the dynamic kernel

generator fω to independently produce a dynamic kernel Gin
ij ∈ Rc×h×w×k×k for

each support feature map Sij , following the process described in § 3.3.
Task-Specific Kernel. Adapting according to the whole context of support set
is essential for FSL since it contains essential information of the task [36]. Fol-
lowing this intuition, we propose to learn the task-specific kernel to represent the
knowledge of the task encoded in the support set. We achieve this by first using
a context learning module fϕ to produce a fully context-aware representation
for the support set by refining and aggregating the intermediate features. To be
specific, we use four 1×1 convolution layers with a summation layer in the mid-
dle of the network to aggregate the N×K support features into one task-specific
representation S̃ (Please refer to the supplementary material for the conceptual
diagram of fϕ). Formally, this task representation can be obtained by:

S̃ = fϕ(S), (4)

where S̃ ∈ Rc×h×w and the S denotes the entire support set. Then this task-
specific representation S̃ is used as the input to the dynamic kernel generator,
following the process described in § 3.3 to adaptively produce our task-specific
kernel Gta ∈ Rc×h×w×k×k.

INSTA Dynamic Kernel. Once we have the instance and task-specific ker-
nels, we fuse each instance kernel Gin

ij with task-specific kernel Gta using the
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Hadamard product, such that each dynamic kernel considers both the instance-
level and task-level features. Formally, it can be described as:

Ginsta
ij = Gin

ij ⊙Gta, (5)

where Ginsta
ij is the final fused kernel corresponding to the ij-th sample in the

support set.
After Ginsta

ij is obtained, we apply it on its corresponding support feature
map Sij . This is equivalent to first apply the task-specific kernel to extract the
features, which is relevant to the task and then apply the instance kernel to
further increase the discriminatory power of the resulting feature maps. While
we only apply the task-specific kernel to the query feature map. This design
choice is justified in § 4.3, where we compare our current design with a variant
where we also extract instance kernel from the query feature maps. The dynamic
convolution can be implemented using the Hadamard product between the un-
folded feature map and the dynamic kernel. In doing so, the unfold operation
first samples a k × k spatial region of the input feature map at each time and
then stores the sampled region into extended dimensions, thereby obtaining an
unfolded support feature map Su

ij ∈ Rc×h×w×k×k and an unfolded query feature

map Qu
i ∈ Rc×h×w×k×k. Then the adapted support and query feature maps are

obtained as:

Ṡij = AvgPool2d(Su
ij ⊙Ginsta

ij ) + Sij ,

Q̇i = AvgPool2d(Qu
i ⊙Gta) +Qi,

(6)

where Ṡij ∈ Rc×h×w and Q̇i ∈ Rc×h×w. Note that the convolution operation
between the dynamic kernel and the feature map in Fig. 2 is equivalent to the
average of the Hadamard product between the unfolded feature map and the
dynamic kernel over the k× k dimension (see Fig. 4). In our design, we adopt a
residual connection between the original and the updated feature maps to obtain
the final adapted features. Having the adapted support and query feature maps,
any post-matching algorithms can be adopted to achieve FSL tasks. In § 4, we
demonstrate that our algorithm can further boost the performance on various
few-shot classification models (e.g ., MAML [15], ProtoNet [47] and EMD [62])
and the few-shot detection model [11].

Remark 1. The proposed dynamic kernels are convolutional filters and hence
by nature differ from attention masks. As shown in Fig. 4, the attention mask
merely re-weights each element of a feature map [13,20]. In contrast, our proposal
in Eq. (6) realizes the dynamic convolution by first performing the element-
wise multiplication between the unfolded feature map and the dynamic kernels,
whose results are then averaged over the unfolded dimension. This is essentially
equivalent to convolution operation (see Fig. 4).

4 Experiments

In this section, we first evaluate our method across four standard few-shot clas-
sification benchmarks: mini -ImageNet [38], tiered -ImageNet [39], CUB [53], and



10 R. Ma et al.
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Resulting feature map 
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Resulting feature map Dynamic Convolution 
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Fig. 4: Schematic comparison of the dynamic convolution and attention mech-
anism. The 2-D average of the element-wise multiplication between unfolded
features and dynamic kernels is equivalent to using adaptive kernels sliding over
the original feature map

FC100 [36]. Full details of the implementation are provided in the supplemen-
tary material. Furthermore, we evaluate the effectiveness of our framework for
the few-shot detection task on the MS COCO and PASCAL VOC datasets [11].
Finally, we provide an ablation study to discuss the effect of each module in our
framework. Please refer to supplementary material for a detailed description of
each dataset.

4.1 Few-Shot Classification

We conduct few-shot classification experiments on three different state-of-the-art
models, including MAML [15], ProtoNet [47] and DeepEMD [62] as baselines,
and employ the proposed INSTA on top of them. We use the ResNet-10 backbone
for the MAML and the ResNet-12 backbone for the other two baselines across
all four benchmarks. For a fair comparison, we implement all the baseline mod-
els to report the results indicated by “*” across Table 1 – Table 2. Notably, for
DeepEMD experiments, we adopt the open-cv solver instead of the qpth solver
originally used in the paper to train the network due to resource capacity, which
is indicated by “♣”. Moreover, following the the same evaluation protocols in
our baseline frameworks [7, 62], we report the mean accuracy with 95% confi-
dence interval (Please refer to supplementary material for more implementation
details).

mini-ImageNet. As shown in Table 1, our method improves the performance of
all the baseline models by a noticeable margin. It is worthwhile to mention that
our INSTA can boost the performance of the baseline model ProtoNet by 4.72%
and 3.67%, and achieves 67.01% and 83.13% for 5-way 1-shot and 5-way 5-shot
settings, which outperforms many recent published models. Furthermore, we can
show an improvement over a strong baseline model, i.e. DeepEMD, and achieve
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Table 1: Few-shot classification accuracy and 95% confidence interval on mini -
ImageNet and tiered -ImageNet with ResNet backbones

Model Backbone
mini-ImageNet tiered-ImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MetaOptNet [26] ResNet-12 62.64± 0.61 78.63± 0.46 68.23± 0.23 84.03± 0.56
TADAM [36] ResNet-12 58.50± 0.30 76.70± 0.30 - -
FEAT [61] ResNet-12 66.78± 0.20 82.05± 0.14 70.80± 0.23 84.79± 0.16
CAN [19] ResNet-12 63.85± 0.48 79.44± 0.34 69.89± 0.51 84.23± 0.37
FRN [57] ResNet-12 66.45± 0.19 82.83± 0.13 72.06± 0.22 86.89± 0.14
InfoPatch [30] ResNet-12 67.67± 0.45 82.44± 0.31 71.51± 0.52 85.44± 0.35
GLoFA [33] ResNet-12 66.12± 0.42 81.37± 0.33 69.75± 0.33 83.58± 0.42
DMF [58] ResNet-12 67.76± 0.46 82.71± 0.31 71.89± 0.52 85.96± 0.35

MAML* [15] ResNet-10 54.73± 0.87 66.72± 0.81 59.85± 0.97 73.20± 0.81
INSTA-MAML* ResNet-10 56.41± 0.87 71.56± 0.75 63.34± 0.92 78.01± 0.71

ProtoNet* [47] ResNet-12 62.29± 0.33 79.46± 0.48 68.25± 0.23 84.01± 0.56
INSTA-ProtoNet* ResNet-12 67.01± 0.30 83.13± 0.56 70.65± 0.33 85.76± 0.59

DeepEMD*♣ [62] ResNet-12 67.37± 0.45 83.17± 0.75 73.19± 0.32 86.79± 0.61

INSTA-DeepEMD*♣ ResNet-12 68.46± 0.48 84.21± 0.82 73.87± 0.31 88.02± 0.61

state-of-the-art performance on this dataset. We provide more comparison be-
tween our approach and other state-of-the-art methods in our supplementary
material for mini -ImageNet and tiered -ImageNet.

tiered-ImageNet. As shown in Table 1, our model consistently brings the per-
formance gain over baseline models. Among baseline models, our model shows a
greater performance improvement over MAML than ProtoNet and DeepEMD.
Notably, a significant improvement on 5-way 5-shot can be seen over DeepEMD.
We attribute this improvement to our model’s context module leveraging the
categorical nature of this dataset. The results also show that the DeepEMD ex-
hibits a performance gain with our design and outperforms many other recent
models, which achieves the state-of-the-art result on this dataset.

CUB. The result on the CUB dataset is shown in Table 2, where the performance
of all the three baseline models is improved by integrating the proposed INSTA.
For the ProtoNet baseline with ResNet-12 backbone, as an example, 4.29% and
3.72% improvements can be observed for 5-way 1-shot and 5-way 5-shot, respec-
tively. Moreover, among the improved models, our INSTA-DeepEMD achieves
the state-of-the-art results, which are 75.26% and 88.12% for 5-way 1-shot and
5-way 5-shot settings, respectively. Please refer to supplementary material for
additional results of the INSTA-ProtoNet with ResNet-18 backbone.

FC100. Consistent with the observation in the other benchmarks, the results in
Table 2 again show that a performance improvement can be achieved on FC100.
Furthermore, both INSTA-ProtoNet and INSTA-DeepEMD achieve comparable
performance with the recent state-of-the-art models on FC100, which vividly
shows the effectiveness of our approach.
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Table 2: Few-shot classification accuracy and 95% confidence interval on CUB
and FC100 with ResNet backbones

Model Backbone
CUB FC100

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

RelationNet [48] ResNet-18 67.59± 1.02 82.75± 0.58 - -
Chen et al . [7] ResNet-18 67.02 83.58 - -
SimpleShot [55] ResNet-18 70.28 86.37 - -
Neg-Margin [29] ResNet-18 72.66± 0.85 89.40± 0.43 - -
P-transfer [43] ResNet-12 73.88± 0.87 87.81± 0.48 - -
TADAM [36] ResNet-12 - - 40.10± 0.40 56.10± 0.40
ConstellationNet [59] ResNet-12 - - 43.80± 0.20 59.70± 0.20

MAML* [15] ResNet-10 70.46± 0.97 80.15± 0.73 34.50± 0.69 47.31± 0.68
INSTA-MAML* ResNet-10 73.08± 0.97 84.26± 0.66 38.02± 0.70 51.20± 0.68

ProtoNet* [47] ResNet-12 64.76± 0.33 77.99± 0.68 41.54± 0.76 57.08± 0.76
INSTA-ProtoNet* ResNet-12 69.05± 0.32 81.71± 0.63 44.12± 0.26 62.04± 0.75

DeepEMD*♣ [62] ResNet-12 74.55± 0.30 87.55± 0.54 45.12± 0.26 61.46± 0.70

INSTA-DeepEMD*♣ ResNet-12 75.26± 0.31 88.12± 0.54 45.42± 0.26 62.37± 0.68

4.2 Few-Shot Detection

Problem Definition. Given a query and several support images (each support
image only contains one object), a few-shot detection task is to output labels
and corresponding bounding boxes for all objects in the query image that belong
to support categories. Specifically, few-shot detection follows the N-way K-shot
setting, where the support set contains N categories, with each category having
K samples. In the following, we will discuss the experiment setup of this task.
The implementation details on incorporating our INSTA with the baseline model
proposed by Fan et al . [11] are included in the supplementary material.

Experiment Setup. In this experiment, we follow the training and testing
settings in [11], where a 2-way 9-shot contrastive training strategy is adopted,
and a 20-way 10-shot setting is used for final testing.

Results.

Table 3: The few-shot detection results of 6 different average precision (AP)
on the test set, including MS COCO and PASCAL VOC datasets with 20-way
10-shot setting

Model AP AP50 AP75 APs APm APl

FR [23] 5.6 12.3 4.6 - - -
Meta [60] 8.7 19.1 6.6 - - -
Fan et al . [11] 11.1 20.4 10.6 2.8 12.3 20.7
Fan et al . +INSTA 12.5 23.6 12.1 3.3 13.2 21.4
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We compare our model against the baseline model and other relevant state-
of-the-art few-shot detection models. As shown in Table 3, by incorporating the
proposed INSTA on the baseline model, improved performance can be seen across
all of the metrics. Specifically, as compared to the baseline model, the AP50 is
improved by 3.2% and achieves 23.6%, which empirically shows that our dynamic
kernels indeed extract more informative and representative features. Moreover,
the proposed INSTA improves the performance of detection for objects of all the
scales (refer to APs, APm, and APl), which again illustrates the importance of
our context module when adapting to different object scales in a given task.

4.3 Ablation Study

In the following section, we conduct ablation studies to discuss and verify the
effect of each component of our framework, including the instance-kernel, task-
specific kernel, MSA vs. GAP, and we also evaluate some variants of the proposed
INSTA to justify the selection of our current framework. In this study, we use
the ProtoNet as the baseline, and the ResNet-12 is adopted as its backbone.
Additionally, this study is conducted on the mini -ImageNet under the 5-way
5-shot setting. The results are summarized in Table 4.

Table 4: The ablation study of each component in our framework

ID Model Apply to Sij Apply to Q 5-way 5-shot

(i) ProtoNet - - 79.46± 0.48
(ii) ProtoNet + Gta Gta - 81.56± 0.57
(iii) ProtoNet + Gta Gta Gta 82.51± 0.58
(iv) ProtoNet + Gin Gin - 80.81± 0.60
(v) ProtoNet + Ginsta Gta,Gin - 81.74± 0.56
(vi) INSTA-ProtoNet + GAP Gta,Gin Gta 82.07± 0.56
(vii) INSTA-ProtoNet + Gin

Q Gta,Gin Gin
Q ,Gta 82.24± 0.56

(viii) INSTA-ProtoNet w/o sharing fω Gta,Gin Gta 81.36± 0.59
(ix) INSTA-ProtoNet Gta,Gin Gta 83.13± 0.56

Effectiveness of Task-Specific Kernel. We study the effect of the task-
specific kernel in this experiment (i.e., (ii) in Table 4), where we only apply
the task-specific kernel to support samples and leave the query unchanged. By
comparing (i) and (ii), we can observe that our task-specific kernel improves the
performance of ProtoNet by 2.10%. Moreover, we apply the task-specific kernel
on the query in setting (iii), and we can observe a further improvement over the
setting (ii), which verifies the effectiveness of our task-specific kernel.
Effectiveness of Instance Kernel. In setting (iv), we enable the instance ker-
nel based on ProtoNet (i.e., (i)) and the performance of ProtoNet is improved
by 1.35%. Moreover, comparing setting (ii), where the only task-specific kernel
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is enabled, to setting (v), where both task-specific and instance kernels are en-
abled, a performance improvement can also be observed. Both cases illustrate
the effectiveness of our instance kernel.
Effectiveness of query adaptation. The purpose of this experiment is to
study the effect of the adaptation on the query feature. In setting (iii), we en-
able the task-specific kernel on both support and query features but disable
the instance kernel. Compared to setting (ii), where the task-specific kernel is
enabled only on the support features, setting (iii) yields a better performance.
Furthermore, the comparison between setting (v) and (ix) highlights the impor-
tance of adapting the query feature map using the task information for FSL
tasks.
Effectiveness of MSA. In this study, we show the performance gap between
using GAP and MSA (§ 3.3). In setting (vi) we replace the MSA in our final
design (ix) with GAP. As the results in Table 4 showed, the MSA indeed helps
with learning a more informative and representative dynamic kernel than GAP.
Instance Kernel for Query. In our framework, we only use task-specific ker-
nels on the query feature map since the instance kernels obtained from support
samples might not be instance level representative for the query sample but pro-
vide useful task information. Therefore, we perform extra experiments to verify
whether the instance kernel obtained from the query itself can extract better
features. As the result in (vii) indicates, the instance kernel extracted from the
query feature map does not improve the performance, as compared to our final
design.
Shared Dynamic Kernel Generator. We hypothesize that sharing the Dy-
namic Kernel Network for the task-specific kernel and instance kernel encourages
learning a more representative instance kernel. To verify this, we further con-
duct an experiment where two independent dynamic kernel generators are used
to produce the task-specific kernel and instance kernel. As the comparison be-
tween (ix) and (viii) shows, inferring the instance and task kernels using a shared
weight dynamic kernel generator is an essential design choice.

5 Conclusion

In this paper, we propose to learn a dynamic embedding function realized by a
novel dynamic kernel, which extracts features at both instance-level and task-
level while encoding important frequency patterns. Our method improves the
performance of several FSL models. This is demonstrated on 4 public few-shot
classification datasets, including mini -ImageNet, tiered -ImageNet, CUB, and
FC100 and a few-shot detection dataset, namely MS COO-PASCAL-VOC.

6 Implementation Details

6.1 Datasets

mini-ImageNet. The mini -ImageNet is sampled from ImageNet [10]. This
dataset has 100 classes, with each having 600 samples. We follow the standard
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protocol [38] to split the dataset into 64 training, 16 validation, and 20 testing
classes.

tiered-ImageNet. Similar to mini -ImageNet, tiered -ImageNet is also a subset
of the ImageNet. This dataset consists of 608 classes from 34 categories and is
split into 351 classes from 20 categories for training, 97 classes from 6 categories
for validation, and 160 classes from 8 categories for testing.

CUB. The CUB is a fine-grained dataset, which consists of 11,788 images from
200 different breeds of birds. We follow the standard settings [29], in which
the dataset is split into 100/50/50 breeds for training, validation, and testing,
respectively.

FC100. FC100 dataset is a variant of the standard CIFAR100 dataset [25],
which contains images from 100 classes, with each class containing 600 samples.
We follow the standard setting [36], where the dataset is split into 60/20/20
classes for training, validation and testing, respectively.

MS COCO and PASCAL VOC Datasets. In the few-shot detection task,
we follow the protocol used in [11] to construct the dataset, where images from
60 categories of the MS COCO dataset are used for training and images from the
rest of 20 common categories between MS COCO and PASCAL VOC datasets
are used for testing.

6.2 Few-Shot Classification Hyperparameters

Network and Optimizer. We use the ResNet-10 backbone [7] for the MAML
and the ResNet-12 backbone [61, 62] for the other two baselines across all four
benchmarks. Noted additional ResNet-18 back1bone [66] is employed for the
ProtoNet experiments on CUB. We fix the size of input images to 84 × 84 for
ProtoNet and DeepEMD baselines and 224×224 for MAML baseline (We strictly
follow the same pre-processing protocol2 in the original DeepEMD implemen-
tation to implement the metric-based baselines and our model, i.e., DeepEMD,
ProtoNet, INSTA-DeepEMD, and INSTA-ProtoNet. For MAML, we strictly fol-
low the pre-processing protocol implemented in [7]3). We use SGD optimizer for
ProtoNet and DeepEMD experiments [61,62] and AdamW optimizer for MAML
experiments [7] across all the datasets. For ProtoNet and DeepEMD baselines,
we use L2 regularizer with 0.0005 weight decay factor. In the MAML baseline,
the weight dacay factor is 0.01. For ResNet-18 and ResNet-10 backbones, we
disable the average pooling and remove the last fully connected (FC) layer to
produce the feature maps with size of 512×11×11 and 512×7×7, respectively.
In the ResNet-12 backbone, the network produces the feature map with a size
of 640× 5× 5.
Training. We follow the good practice in the state-of-the-art models [45,61,62],
where the network training is split into two stages, i.e. pre-training and meta-
training stages. During pre-training stage, the backbone network with a FC layer

2 https://github.com/icoz69/DeepEMD.
3 https://github.com/wyharveychen/CloserLookFewShot.

https://github.com/icoz69/DeepEMD
https://github.com/wyharveychen/CloserLookFewShot
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is trained on all the training classes of the dataset with the standard classifi-
cation task. We select the network with the highest validation accuracy as the
pre-trained backbone network for the meta-training stage. During meta-training
stage, we follow the standard episodic training protocol [52] to train the en-
tire model. We set a small learning rate (0.0002) for the backbone and a larger
learning rate (0.0002 × 25) for the other modules during meta-training stage.
Additionally, we use cosine annealing learning rate scheduler over 200 epochs.

N x K, c, h, w

c, h, w

1×1
conv

x2
1×1
conv

x2+

Fig. 5: The conceptual diagram of the context learning module

6.3 Few-Shot Detection

For the few-shot detection task, we consider the method proposed by Fan et
al . [11] as our baseline model, which inherits from the faster-R-CNN [40] frame-
work. Similar to the few-shot classification task, we implement our method to
produce dynamic kernels and perform convolution on the feature maps extracted
by the backbone network (i.e. ResNet-50), which is followed by a region proposal
network (RPN), a region of interest pooling (ROI pooling) operation, and the
classification and bounding box regression heads, outputting the categories and
bounding boxes for the objects to the query image. Notably, For a fair compar-
ison, we do not use any additional data augmentation. Please refer to [11] for
more details of the framework and training strategy.

7 Additional Experiment Results

7.1 mini-ImageNet, tiered-ImageNet, and CUB

In this part, we provide extra comparison between our model and other state-
of-the-art models on mini -ImageNet, tiered -ImageNet, and CUB. We follow the
same evaluation protocol in [62]4 to evaluate the metric-based baseline mod-
els and our models (i.e., DeepEMD, ProtoNet, INSTA-DeepEMD, and INSTA-
ProtoNet), where 5,000 and 600 episodes are randomly sampled for 1-shot and
5-shot settings. For MAML baseline and INSTA-MAML, we strictly follow the

4 https://github.com/icoz69/DeepEMD/blob/master/eval.py.

https://github.com/icoz69/DeepEMD/blob/master/eval.py
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same evaluation protocol in [7]5, where 600 episodes are randomly sampled for
both 1-shot and 5-shot settings.

Table 5: Few-shot classification accuracy and 95% confidence interval on mini -
ImageNet and tiered -ImageNet with ResNet backbones

Model Backbone
mini-ImageNet tiered-ImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MetaOptNet-SVM [26] ResNet-12 64.09± 0.62 80.00± 0.45 - -
Neg-Margin [29] ResNet-12 63.85± 0.81 81.57± 0.56 - -

TPN [31] ResNet-12 59.46 75.65 - -
DSN-MR [45] ResNet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.82± 0.56
E3BM [32] ResNet-12 63.80± 0.40 80.10± 0.30 71.20± 0.40 85.30± 0.30
ConstellationNet [59] ResNet-12 64.89± 0.23 79.95± 0.37 - -
MELR [14] ResNet-12 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35
CNL [63] ResNet-12 67.96± 0.98 83.36± 0.51 73.42± 0.95 87.72± 0.75

MAML* [15] ResNet-10 54.73± 0.87 66.72± 0.81 59.85± 0.97 73.20± 0.81
INSTA-MAML* ResNet-10 56.41± 0.87 71.56± 0.75 63.34± 0.92 78.01± 0.71

ProtoNet* [47] ResNet-12 62.29± 0.33 79.46± 0.48 68.25± 0.23 84.01± 0.56
INSTA-ProtoNet* ResNet-12 67.01± 0.30 83.13± 0.56 70.65± 0.33 85.76± 0.59

DeepEMD*♣ [62] ResNet-12 67.37± 0.45 83.17± 0.75 73.19± 0.32 86.79± 0.61

INSTA-DeepEMD*♣ ResNet-12 68.46± 0.48 84.21± 0.82 73.87± 0.31 88.02± 0.61

Table 6: Few-shot classification accuracy and 95% confidence interval on CUB
with ResNet backbones

Model Backbone 5-way 1-shot 5-way 5-shot

MAML* [15] ResNet-10 70.46± 0.97 80.15± 0.73
INSTA-MAML* ResNet-10 73.08± 0.97 84.26± 0.66

DeepEMD*♣ [62] ResNet-12 74.55± 0.30 87.55± 0.54

INSTA-DeepEMD*♣ ResNet-12 75.26± 0.31 88.12± 0.54

ProtoNet* ResNet-18 75.06± 0.30 87.39± 0.48
INSTA-ProtoNet* ResNet-18 77.18± 0.29 89.54± 0.44

7.2 Meta-Dataset

To verify the effectiveness of our method on the cross-domain few-shot classifica-
tion problem, we incorporate INSTA into the baseline model simple-CNAPS [3].
In this experiment, we fix the trained baseline model and only fine-tune the

5 https://github.com/wyharveychen/CloserLookFewShot/blob/master/test.py.

https://github.com/wyharveychen/CloserLookFewShot/blob/master/test.py
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Table 7: Few-shot classification results on Meta-dataset with ResNet-18 back-
bone

Dataset Simple-CNAPS INSTA-Simple-CNAPS

ILSVRC 55.5± 1.1 58.5± 1.1
Omniglot 91.0± 0.6 91.9± 0.6
Aircraft 81.2± 0.7 82.4± 0.8
Birds 74.3± 0.9 75.7± 0.8
Textures 66.9± 0.8 67.8± 0.8
Quick Draw 76.7± 0.8 76.8± 0.8
Fungi 47.5± 1.0 49.2± 1.1
VGG Flowers 90.5± 0.6 90.4± 0.6
Traffic Signs 72.0± 0.7 74.1± 0.7
MSCOCO 47.3± 1.1 53.9± 1.1

modules to generate the INSTA dynamic kernels (i.e., dynamic kernel generator
and context learning module). We follow the same implementation of simple-
CNAPS6 to conduct this experiment (e.g ., 8 × 10−3 as learning rate, Adam as
the optimizer, etc.). As the results in Table 7 suggested, INSTA improves the
baseline over almost all the datasets, which again shows the effectiveness of our
proposed INSTA dynamic kernels.

7.3 Ablation Study

In this part, we provide extra ablation studies on the effect of the residual con-
nection and the spatial size of our dynamic kernel.
Residual Connection. In this experiment, we study the effect of the residual
connection in our framework. In setting (i) of the Table 8, we disable the residual
connection between the adapted and original features. The result suggests that
the residual connection is an essential design choice for our framework.
Kernel Size. We provide an extra study on the effect of the spatial size of our
dynamic kernel. Given that the feature map extracted by ResNet-12 has spatial
size 5 × 5, the dynamic kernel size is constrained smaller or equal to 5 × 5.
Therefore, in this study, we compare the results when the dynamic kernel size
k = 5× 5 to our final design (k = 3× 3).

8 Multi-Spectral Attention

In this section, we provide more details for using the 2D-DCT to obtain the
frequency-encoded vector. We first introduce the basis function of the 2D-DCT.

6 https://github.com/peymanbateni/simple-cnaps/tree/master/

simple-cnaps-src.

https://github.com/peymanbateni/simple-cnaps/tree/master/simple-cnaps-src
https://github.com/peymanbateni/simple-cnaps/tree/master/simple-cnaps-src
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Table 8: The extra ablation study for the effect of the residual connection and
spatial size of our dynamic kernel

ID Model 5-way 5-shot

(i) INSTA-ProtoNet w/o residual 80.03

(ii) INSTA-ProtoNet w/ 5× 5 Gdy 82.43
(iii) INSTA-ProtoNet 83.13

The basis Ba,b
u,v of the 2D-DCT is given by:

Ba,b
u,v = cos(

πu

h
(a+

1

2
))cos(

πv

w
(b+

1

2
)), (7)

where u, v are the frequency components of a basis. Then the frequency-encoded
vector of a 3D-tensor Si ∈ R c

n×h×w can be obtained by:

τ i =

h−1∑
a=0

w−1∑
b=0

S:,a,bB
a,b
ui,vi

s.t. i ∈ {0, 1, . . . , n− 1},

where τ i ∈ R c
n is the frequency-encoded vector, h and w are the height and width

of the input signal. We pick the lowest 16 frequency components for our basis
function according to [37]. Finally, we concatenate all the frequency-encoded
vectors as:

τ = concat(τ 0, τ 1, . . . , τn−1), (8)

where τ ∈ Rc.
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