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Abstract

Few-shot learning aims to correctly recognize query

samples from unseen classes given a limited number of sup-

port samples, often by relying on global embeddings of im-

ages. In this paper, we propose to equip the backbone net-

work with an attention agent, which is trained by reinforce-

ment learning. The policy gradient algorithm is employed

to train the agent towards adaptively localizing the repre-

sentative regions on feature maps over time. We further de-

sign a reward function based on the prediction of the held-

out data, thus helping the attention mechanism to general-

ize better across the unseen classes. The extensive experi-

ments show, with the help of the reinforced attention, that

our embedding network has the capability to progressively

generate a more discriminative representation in few-shot

learning. Moreover, experiments on the task of image clas-

sification also show the effectiveness of the proposed design.

1. Introduction

The success of deep learning models rely heavily on a

significant amount of labeled data, but the availability of

large datasets is still limited due to the labor-intensive data

preparation, which motivates the significant interest in few-

shot learning [22, 40, 49, 11, 51, 47, 45]. Few-shot learning

aims to enable the model to classify unlabeled query ex-

amples of unseen classes, utilizing a very small number of

labeled support examples. One prominent category of meth-

ods is the model-initialization based approach [40, 11, 47].

It temporarily updates the model parameter using support

examples via gradient descent steps for the training tasks,

and seeks a representation that generalizes well in the test-

ing phase. Another line of work, the metric-learning based

methods [22, 49, 51], is based on the complex manipulation

of global embeddings learned by the backbone network.

*corresponding author

Figure 1. Few-shot learning processes. (a) Vanilla few-shot learn-

ing. (b) Few-shot learning with RAP. The learning process has

been formulated as a Markov Decision Process (MDP).

Even though the traditional approaches work well for the

task of few-shot learning, they are likely to ignore the spa-

tial information encoded within feature maps, which make

the model very sensitive to the background clutter on image

examples [62]. To fully make use of the available spatial

information, attention-oriented designs are recently devel-

oped for few-shot learning [53, 55, 7, 62, 42, 16, 9]. Us-

ing word embeddings as auxiliary data, semantics-guided

attention modules are proposed to capture the relevant vi-

sual features among query samples [55, 7, 62]. In addition

to the semantics-guided attention, the sample-guided atten-

tion designs are able to further explore the feature relevance

between support samples and query samples [53, 42, 16].

While these attention models effectively make class features

more representative, they tend to focus too much on design-

ing a complex meta-learner.

In order to address the aforementioned weakness, in

this work, we propose a reinforced-attention policy (RAP)

913



model for few-shot learning, an attention mechanism

trained by reinforcement learning. Specifically, an auxiliary

agent is designed to equip the backbone network for com-

puting a series of attention maps which recurrently decide

where to enforce or ignore over the feature maps.

Our designed RAP enables the backbone network to

identify informative parts of the feature maps of an exam-

ple, and thus make generated embeddings more discrimina-

tive for the few-shot meta-learner. We formulate the fea-

ture extraction of examples as a Markov Decision Process

(MDP) and optimize RAP in a reinforcement learning set-

ting. Given example images, the agent which progressively

refines the attention upon feature maps over time is opti-

mized according to the online feedback, i.e., the computed

reward. The specific reward function which incorporates

the performance of the meta-learner on the held-out data is

designed to guide the agent towards being more generic.

More details are specified in Fig. 1. As illustrated in Fig.

1 (a), the vanilla few-shot learning process can be viewed

as a two-component paradigm: the feature extractor, i.e.

the backbone network and the meta-learner. Given several

query examples Xq = {Xq,1,Xq,2, ...,Xq,i, ...} and support

examples Xs = {Xs,1,Xs,2, ...,Xs,j , ...} with labels Ys =
{Ys,1, Ys,2, ..., Ys,j , ...}, the meta-learner works as a classi-

fier to identify the category Ŷq = {Ŷq,1, Ŷq,2, ..., Ŷq,i, ...}
of query examples based on embedding features, eq =
{eq,1, eq,2, ..., eq,i, ...} and es = {es,1, es,2, ..., es,j , ...},

computed by the backbone network. How RAP works on a

few-shot learning task is further shown in Fig. 1 (b). Using

RAP to equip the backbone network, we convert the few-

shot learning into a MDP. The policy module continuously

receives the reward rt as feedback from the meta-learner

and gives the action at towards the larger total reward. The

embedding eT from the last time step T is viewed as the

resulting embedding. Hence, instead of Ŷq , we take Ŷq,T as

the final prediction. The modification to only the backbone

network makes RAP skip the further design of the meta-

learner, such that RAP is able to be embedded in most ex-

isting few-shot learning baselines.

The contributions of this work can be summarized as fol-

lows: i) Our proposed RAP is capable of attending to in-

formative regions of feature maps while avoiding the ex-

tra cumbersome meta-learner design. Additionally, most

of the few-shot learning baselines can be equipped with

RAP, since RAP is essentially a flexible extension specific

to the backbone network. ii) We provide a novel solution to

train the attention mechanism by using reinforcement learn-

ing. Intuitively, the recurrent formulation in a reinforcement

learning manner can help the attention mechanism to incre-

mentally locate useful parts of the features due to the char-

acteristic that reinforcement learning is able to substantially

learn from experience.

In the experimental part of our few-shot learning, we se-

lect several baselines for which RAP agents are trained. In

effect, our embedded design pushes the backbone network

to produce embeddings which become more discriminative.

Aside from few-shot learning, our design is applicable to

image classification. The effectiveness is demonstrated via

experiments on multiple benchmark datasets.

2. Related Work

Attention Design. The attention mechanism, aimed at at-

tending to the discriminative areas adaptively, have been

studied extensively for 2D and 3D visual tasks [17, 60,

56, 36, 69, 10, 39]. Those attention blocks either focus

on the channel encoding [17, 39] or spatial context con-

nection [56]. Hu et al. first propose the Squeeze-and-

Excitation Network (SENet), to weight each slice of the fea-

ture map [17]. Later work, termed Convolutional Block At-

tention Module (CBAM) [60], further employs hybrid spa-

tial and channel features for attention design. In [56], the

spatial context connection is established by the visual simi-

larity between the features of the query and the key. Differ-

ent from existing works, our attention design selects the in-

formative areas by recurrently attending to the feature maps

in a reinforcement learning manner. The work in [36, 69]

also uses the recurrent model to learn an attention mask. In

our work, RAP is expected to boost its generalization power

by the learning experience on the held-out data.

Few-shot Learning. Few-shot learning originates from

the task in imitation of the human learning ability. Human

beings are able to recognize a class given a few instances.

Model-Agnostic Meta-Learning (MAML) [11] and Proto-

typical Network (ProtoNet) [49] are viewed as represen-

tatives for model-initialization based methods and metric-

learning based methods, respectively. The former quickly

adapts the classifier to the target task by learning a sensitive

initialization. The latter accurately calculates the prototype

of each class, and minimizes the distance in a embedding

space between query samples and their corresponding pro-

totype per class. Negative margin loss (Neg-Margin) is in-

troduced to metric-learning based methods in [31]. Some

methods, which we call graph-construction based methods,

are recently studied by exploring the structural information

among examples. Liu et al. [32] develop Transductive

Propagation Network (TPN) where a graph to propagate la-

bels from labeled samples to unlabeled samples is learnt.

Similar to TPN, the framework named Transfer Simplified

Graph Convolutional Network (Transfer+SGC) proposed in

[18] comes with the use of the graph convolutional network

to share the information between the unlabeled examples

and labeled examples. Ziko et al. [68] propose a graph

clustering method (LaplacianShot) which encourages the

neighboring query samples to have the same label assign-

ment. Keeping the original meta-learner design, we extend
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four baseline models with RAP: MAML, ProtoNet, Lapla-

cianShot and Neg-Margin.

Attention in Few-shot Learning. There are two main

categories of attention mechanism applied in few-shot

learning. The first one is semantics-guided attention [55, 7,

62, 6]. Guided by word embeddings, Multi-attention Net-

work [55] generates attention maps over visual features of

examples, hence the representative parts of an example can

be precisely captured. Like Multi-attention Network, an

attention generator is developed in [7] to localize the rel-

evant regions in an image with the help of word embed-

dings. Yan et al. [62] develop a dual attention network

(STANet) trained with a semantic-aware loss. The other

category is sample-guided attention [53, 42, 16]. Match-

ing Network (MatchingNet) [53] uses an attention based

on the softmax function to fully specify the prediction of

the meta-learner classifier. Similar to the Matching Net-

work, Cross Attention Network (Cross-Attention) proposed

by Hou et al. [16] aims at modeling the semantic depen-

dency between support samples and query samples. The rel-

evant regions on the query samples are adaptively localized

such that the discrimination of embedding features bene-

fit. MatchingNet provides attention on embeddings while

Cross-Attention manipulates feature maps. Under the set-

ting of incremental few-shot learning, an attention attrac-

tor model [42] is presented to regulate the meta-learning of

unseen classes by attending to seen classes. In contrast to

these works, our developed RAP attempts to sequentially

capture the important information within the feature maps

of the backbone network. Its simple extension to the back-

bone network avoids the complicated meta-learner structure

design. In addition, the external semantic data resource is

not needed.

Reinforcement Learning on Visual Tasks. Deep learn-

ing is widely investigated in the domain of reinforcement

learning. By introducing the deep neural network to build-

ing the value function or the policy function, the reinforce-

ment learning agent has a powerful capacity to learn the dy-

namics of the environment with which it interacts. Deep Q

Network (DQN) [37] and Deep Deterministic Policy Gra-

dient (DDPG) [30] are the very first attempts to apply the

deep neural network in a reinforcement learning setting.

Recently, a number of works introduce deep reinforcement

learning to the computer vision community. Reinforcement

learning is easily utilized in sequential visual tasks, like

tracking [64, 3, 41], action recognition [63, 52, 4], visual

navigation [57, 67], video summarization [29] and person

re-id [25]. The applications are also studied on more classic

tasks, such as classification [61], object detection [2, 35],

segmentation [1, 66] and pose estimation [24, 44]. How-

ever, few works employing reinforcement learning have

Figure 2. The frameworks of baseline model and RAP model. (a)

Baseline model. Given the input image Io, the backbone network

generates the embedding e. (b) RAP model. The recurrent formu-

lation is built where each input image is processed over multiple

time-step. The designed policy module is combined with the back-

bone network to compute the action at. The embedding computed

after the final time step eT is the resulting embedding.

been done so far in the domain of few-shot learning.

3. Methodology

The overviews of relevant frameworks are depicted in

Fig. 2. As shown in Fig. 2 (b), the baseline model (see

Fig. 2 (a)) is equipped with a policy module which receives

recurrent signals and reinforces the backbone network to

attend to the discriminative areas within the feature maps.

Conditioned on an example image, the RAP model sequen-

tially seeks the scoring tensor for the corresponding feature

maps generated by the backbone network. During this pro-

cess, we leverage reinforcement learning to train a reward-

directed agent, i.e., the policy module (see Fig. 3). Note

that how RAP model is applied in few-shot learning is illus-

trated in Fig. 1.

3.1. Problem Statement

As described in Fig. 2 (b), one execution of RAP can

be understood as a MDP. RAP agent, i.e., the policy mod-
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ule interacts with the backbone network via multiple time

steps. Its behavior can be represented as state-action pairs.

At time step t, the agent observes the state st, executes the

action at and receives the reward rt towards optimizing the

policy. The action at current time step at only depends on

the current state st and the next state st+1 is conditioned on

both st and at.

To be specific, given feature maps from the backbone

network, our RAP module will recurrently attend to infor-

mative areas within feature maps, as the RAP agent will

determine attention maps until more informative areas in

feature maps are found. In our setting, the action at equals

the attention maps. The varying factors, such as the input

image Io and the computed embeddings et, are modeled as

states st in RL. In the following, we will introduce more

details about state, action and reward.

State: Under reinforcement learning settings, we nor-

mally encode the observed environment dynamics as states.

As depicted in Fig. 2 (b), the dataset and backbone net-

work are modeled as the environment to the agent. The im-

age itself Io ∈ R
H×W×3 and the embedding feature vector

et ∈ R
NSE×1 generated from the last convolutional block

are aggregated as the state st = {sI = Io, sEt = et} at

time step t ∈ {0, 1, 2, ..., T}. T is the total execution times

to each image. It is noted that sI is fixed in one sequence

of processing. We need to address the issue that the high

variance exists among tremendous images [36, 34]. For this

purpose, we treat the image Io as one of states sI . Hence,

RAP is capable of learning the variance among input im-

ages. In addition, the setting of the state enables the agent

to fuse both the low-level information and the high-level in-

formation. The high-level information from sEt indicates the

how action affects the backbone network. The low-level in-

formation which is encoded within sI represents the image

variance.

Action: Attention computed at time t for weighting each

pixel on feature map are defined as the action at ∈ R
h×w×c

where h, w and c are its height, width and length. As illus-

trated in Fig. 3. the action before reshaping operation av
t ∈

R
hw×1 is drawn from the distribution π: av

t ∼ π(.|g(st|θp))
where π is the distribution function parameterized by the

computation from policy function g. Then, avt ∈ R
hw×1

is reshaped and duplicated to at ∈ R
h×w×c which has the

same size as the operated feature map. The element-wise

multiplication is performed to give the refined feature map

as follows:

mt = at ⊗ m. (1)

where m ∈ R
h×w×c (mt ∈ R

h×w×c) is the feature map be-

fore (after) the action being taken at time t. Given the state

st, the policy function g can decide which pixel along the

Figure 3. The framework of the policy module. The module essen-

tially maps the state st to the action at. σ(.) is Sigmoid function.

channel in the feature map should be heightened or weak-

ened at time t.

Reward: After the execution of the action at over feature

maps at step t, the agent receives the reward rt which eval-

uates at. The reward function matters in the sense that it

criticizes the direction that the policy is optimized towards.

One goal of introducing RAP is to adaptively allocate the

informative areas over feature maps via a sequential pro-

cess. In doing so, one option is to closely monitor and react

to the model performance on the held-out data. This can

be achieved with the help of the validation set. Hence, the

reward function is proposed as

rt = −αℓval,t (2)

where ℓval,t is the loss built on the validation set at time t

and α is the coefficient. In our case, the reward design aims

at directing the policy to achieve the higher prediction on

the validation data. By explicitly pursuing the better perfor-

mance on the validation data, RAP is able to have the better

generalization ability and therefore pay attention to more

useful information on feature maps.

3.2. Policy Design

In this case, we exploit reinforcement learning to learn

the policy. The architecture of the policy module is illus-

trated in Fig. 3. Let g(st|θp) be the policy function which

outputs the vector ut ∈ R
hw×1, representing the parameter

value of the distribution function π(.|g(.|θp)). Under this

distribution, avt ∈ R
hw×1 can be chosen.

As shown in Fig. 3, given the image sI , the conv block,

which contains standard conv operations followed by the

global average pooling along each channel, is used to com-

pute a Nl1-dimensional representation lI ∈ R
NlI×1. The

resulting vector lI is then concatenated with another state

vector lEt = sEt ∈ R
NlE×1 passed from the last time step

to form the vector lt = {lI , lEt } which encodes the low-

level spatial information from the given example image and

the high-level semantic information from the backbone net-

work. Taking lt as input, the linear block follows to cal-
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culate ut. The configuration of the linear block is con-

structed with fully connected (FC) layers. The computed

action vector av
t should be reshaped and extended c times

to at ∈ R
h×w×c where c indicates the channel number of

the feature map to be operated on. We need to avoid the

situation that the proposed auxiliary mechanism itself con-

tributes too much to boosting the performance, for which

the designed convolution block is usually much shallower

than the first conv block of the backbone network before

the operation on the feature map.

3.3. Policy Training

The learnable parameter θ = {θb,θp} contains the pa-

rameter of the backbone network θb and the policy module

θp. The objective of policy training is to maximize the sum

of the reward Jπ =
∑T

t rt under the distribution π given

the input image sI . We directly write the reinforcement loss

ℓrein as follows:

ℓrein = −
1

NT

N
∑

i=1

Jπ
i

= −
1

NT

N
∑

i=1

T
∑

t=1

log(π(ui,t|si,t,θp))ri,t

(3)

where ut = g(st|θp) on the current state st is the pre-

dicted parameter (e.g., mean) to the distribution function π

in choosing avt and logπ is the log-probability. N is the

batch size of images that the model processes in each time

step. Using the REINFORCE algorithm [59], the gradient

can be expressed as:

∇θJ
π =

T
∑

t=1

∇θlog
(

π(ut|st;θp)
)

rt, (4)

The gradient ∇θJ
π in (4) encourages the optimal pa-

rameter to produce a larger reward. The parameter θp de-

termines the sensitivity of the policy to the reward rt. Its

motivation is to seek a suitable scale acting on the feedback

from the validation. Suppose ri,t becomes zero, the gradi-

ent ∇θJ
π likewise becomes zero, which would not push the

weight to be optimized. One possible concern is that only a

reinforcement learning loss ℓrein that does not include the

train data would make the model more firmly rooted in the

validation data and thus negatively degrades the accuracy.

Incorporating the loss based on the train set can explicitly

avoid this problem. It is therefore worth considering a com-

posite form of the total loss as:

ℓtotal = ℓrein + ℓtrain (5)

where ℓtrain is the loss built on the train data. When the

training is under progress with ℓtotal, θ is free to be updated.

The train loss ℓtrain based on the train data guarantees the

basic performance of the backbone network whereas the re-

inforce loss ℓrein based on the validation data enables the

policy module to actively identify the informative areas on

the feature map of the backbone. When it comes to the in-

ference stage, θ becomes frozen.

4. Experiment

The proposed design is mainly evaluated on the task

of few-shot learning. We assess our RAP model over the

miniImageNet [40] and Caltech-UCSD Birds (CUB-200-

2011) [54] datasets where it consistently outperforms the

corresponding baseline model. Then, to verify that the fea-

sibility of our design is not restricted to few-shot learning

alone, experiments on image classification are performed

on CIFAR10/100 and STL-10. The standard data aug-

mentations, i.e., random crop and random horizontal flips,

are applied to the training samples throughout all exper-

iments. The Adam optimizer [21] is employed to opti-

mize the model weight. Moreover, the trained model that

achieves the best validation accuracy is selected to do the

inference. All deep models are implemented using PyTorch

[38]. We opt for Gaussian function as distribution function

π whose mean value is computed by policy function g.

4.1. Datasets

miniImageNet. For few-shot learning, miniImageNet

[40] is the most popular benchmark (60000 images of size

84×84 selected from ImageNet) which is comprised of 64

training classes, 16 validation classes and 20 test classes of

images. Every class has 600 images. The size ratio of the

train set and validation set is 4:1.

CUB-200-2011. The CUB-200-2011 dataset [54] consists

of 11788 images of 84×84 from 200 classes. Following the

data preparation from [15], we randomly divide it into 100

train classes, 50 validation classes and 50 test classes.

CIFAR10/100. CIFAR10/100 [23] comprises 60000 im-

ages from 10 classes/100 classes. The size of each image

is 32 × 32. There are originally 50000 train images and

10000 test images. Our method needs a validation set, thus,

we randomly divide the original train set into 40000 train

samples and 10000 validation samples.

STL-10. STL-10 [8] contains 10 classes where each class

has 500 train images and 800 test images of 96×96. Similar

to CIFAR, the original train data is proportionately split into

train data and validation data by a ratio of 4:1.

4.2. Fewshot Learning

Training a few-shot learning machine is characterized as

an episode training. An episode, which is randomly sam-
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pled from training data, is a simple N -way K-shot Q-query

classification task. The training process is to classify Q×N

query samples from N classes correctly given K samples

per class (e.g., K = 1 or 5).

The 1-shot and 5-shot scenarios are examined. Our en-

tire set of experiments are performed using the setting of 5-

way and 16-Query. Moreover, we arrange 1200 episodes at

random for MAML and ProtoNet (10000 and 600 episodes

for LaplacianShot and Neg-Margin, respectively). The final

performance is provided averaging the classification accu-

racy over episodes. For the design details of the policy mod-

ule, the conv block includes three convolutional layers with

3×3 convolutions where each layer is followed by a batch

normalization, ReLU and max pooling. One-layer FC is fol-

lowing as a linear block. The total time step T is kept fixed

as 5. The coefficient α in (2) is set to 1e-4. Different archi-

tectures of backbone network are assessed including Conv-

4 [53], Conv6, ResNet-10, ResNet-12, ResNet-18 [14] and

DenseNet-121 [19]. We insert our attention module after

the second (or third) conv block of Conv-4 and Conv-6 (or

ResNet-10, ResNet-12, ResNet-18 and DenseNet-121).

4.2.1 miniImageNet

In the first part of our few-shot learning experiments, we

compare the performance on miniImageNet. The results

are presented in Table 1. We equip the classic baselines

including MAML and ProtoNet with our proposed RAP.

LaplacianShot, an excellent baseline, is also considered. In

most cases, our RAP models outperform their correspond-

ing baseline counterparts except for RAP-LaplacianShot

with DenseNet-121 in the 5-way 1-shot setting. Another

observation is that the choice of baseline do affect the per-

formance improvement against baselines. RAP-MAML and

RAP-ProtoNet yield a greater performance improvement

than RAP-LaplacianShot. Comparisons with other few-shot

learning baselines which exploit attention are provided in

Table 2. As we can see from the table, our performance is

better than others given the same backbone.

4.2.2 CUB-200-2011

Below, experiments are performed on CUB-200-2011. In

this case, besides MAML and ProtoNet and LaplacianShot,

we test another strong baseline, Neg-Margin. The obtained

accuracy are reported in Table 3. It is obvious that using

MAML, RAP models have an accuracy increase of around

2% to 6% against the baseline models whatever the choice

of backbone. Similarly, it is also the case for ProtoNet,

LaplacianShot and Neg-Margin, that the performance of

RAP models are significantly superior to the corresponding

baselines. The competitive outcomes prove that the learned

policy by reinforcement learning helps the backbone net-

work to localize the informative areas of the feature map

5-way Acc.

Model Backbone 1-shot 5-shot

MAML [11]

Conv-4 48.70±1.84 63.15±0.92

Conv-6 50.96±0.92 66.09±0.71

ResNet-10 54.69±0.89 66.62±0.83

Conv-6 52.57±0.61 66.96±0.52
RAP-MAML

ResNet-10 56.13±0.62 68.74±0.54

ProtoNet [49]

Conv-4 49.42±0.78 68.20±0.66

Conv-6 50.37±0.83 67.33±0.67

ResNet-10 51.98±0.84 72.64±0.64

Conv-6 51.72±0.72 69.18±0.45
RAP-ProtoNet

ResNet-10 53.64±0.60 74.54±0.45

TPN [32] ResNet-12 59.46 75.65

LTS [28] ResNet-12 70.1±1.9 78.7±0.8

MetaOptNet-SVM [27] ResNet-12 64.09±0.62 80.00±0.45

Neg-Margin [31] ResNet-12 63.85±0.81 81.57±0.56

DSN-MR [46] ResNet-12 67.09±0.68 81.65±0.69

Su et al. [50] ResNet-18 - 76.60±0.70

Hyperbolic ProtoNet [20] ResNet-18 59.47±0.20 76.84±0.14

LwoF [12] WRN 60.06±0.14 76.39±0.11

wDAE-GNN [13] WRN 61.07±0.15 76.75±0.11

EPNet [43] WRN 70.74±0.85 84.34±0.53

LaplacianShot [68]

ResNet-10* 69.47±0.20 79.78±0.15

ResNet-12* 72.29±0.20 82.85±0.14

DenseNet-121 75.57±0.19 84.72±0.13

ResNet-10 71.34±0.19 81.98±0.14

ResNet-12 74.29±0.20 84.51±0.13RAP-LaplacianShot

DenseNet-121 75.58±0.20 85.63±0.13

Table 1. Few-shot classification accuracy on miniImageNet. Pub-

lished results of MAML and ProtoNet with Conv4 are provided in

[11] and [49], respectively while their outcomes under Conv-6 and

ResNet-10 are reported in [5]. ”*” indicates the result is obtained

using networks implemented by us.

5-way Acc.

Model Backbone 1-shot 5-shot

Attention Attractor [42] ResNet-10 54.95±0.30 63.04±0.30

RAP-MAML ResNet-10 56.13±0.62 68.74±0.54

RAP-ProtoNet ResNet-10 53.64±0.60 74.54±0.45

RAP-LaplacianShot ResNet-10 71.34±0.19 81.98±0.14

STANet [62] ResNet-12 58.35±0.57 71.07±0.39

Cross-Attention [16] ResNet-12 67.19±0.55 80.64±0.35

RAP-LaplacianShot ResNet-12 74.29±0.20 84.51±0.13

Table 2. Comparison with other attention designs applied to few-

shot learning on miniImageNet. Different attention models are

compared under the same backbone.

and thus generate discriminative embeddings. It should also

be emphasized, again, that our RAP is compatible with a

number of various few-shot learning baselines.

4.3. Image Classification

For the task of image classification, all models are

trained with a mini-batch size of 128 for 4000 epochs (2000

epochs on STL10). Pre-trained backbones are used. The

learning rate is set to 1e-6. The RAP models execute actions

for T=5 times. The results of the classification accuracy on

three datasets are listed in Table 4 where RAP models sur-

pass the corresponding baseline models with a healthy mar-
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5-way Acc.

Model Backbone 1-shot 5-shot

MAML [11]

Conv-4 54.73±0.97 75.75±0.76

Conv-6 66.26±1.05 78.82±0.70

ResNet-10 70.32±0.99 80.93±0.71

ResNet-18 68.42±1.07 83.47±0.62

Conv-4 61.49±0.70 77.15±0.50

Conv-6 69.95±0.68 81.48±0.44

ResNet-10 74.33±0.65 83.29±0.42
RAP-MAML

ResNet-18 75.04±0.70 86.07±0.43

ProtoNet [49]

Conv-4 50.46±0.88 76.39±0.64

Conv-6 66.36±1.00 82.03±0.59

ResNet-10 73.22±0.92 85.01±0.52

ResNet-18 72.99±0.88 86.64±0.51

Conv-4 56.71±0.66 78.70±0.44

Conv-6 67.79±0.66 83.78±0.41

ResNet-10 75.17±0.63 88.29±0.34
RAP-ProtoNet

ResNet-18 74.09±0.60 89.23±0.31

DeepEMD [65] ResNet-12 76.65±0.83 88.69±0.50

MatchingNet [53] ResNet-18 72.36±0.90 83.64±0.60

RelationNet [51] ResNet-18 67.59±1.02 82.75±0.58

Chen et al. [5] ResNet-18 67.02 83.58

SimpleShot [58] ResNet-18 70.28 86.37

Manifold [33] WRN 80.68±0.81 90.85±0.44

EPNet [43] WRN 87.75±0.70 94.03±0.33

Neg-Margin [31] ResNet-18 72.66±0.85 89.40±0.43

RAP-Neg-Margin ResNet-18 75.37±0.81 90.61±0.39

LaplacianShot [68] ResNet-18 80.96 88.68

RAP-LaplacianShot ResNet-18 83.59±0.18 90.77±0.10

Table 3. Few-shot classification accuracy on CUB-200-2011. The

results of MAML and ProtoNet are provided from [5].

gin. We can observe that on each dataset, RAP models have

a similar accuracy improvement given different backbone

architectures.

4.4. Analysis

Validation Set. RAP models trained by ℓtotal = ℓtrain +
ℓrein work under the specific setting that ℓtrain and ℓrein
are built on train data and validation data, respectively. Any

batch is formed by images from either the training set or

the validation set. The reward rt of RAP incorporates the

feedback from the validation loss ℓval, hence, to justify the

comparison between RAP models and baseline models, it

is necessary to train the baseline models by using both the

train set and the validation set. Thus, the loss ℓtotal = ℓtrain
to the baseline model is replaced by ℓtotal = ℓtrain + ℓval.

As reported in Table 5, even under the same data settings,

RAP models still beat baseline models with different back-

bones. Another fact is that RAP models are sensitive to α.

ℓrein does contribute even if α is set to 1e-4. We thus have

to choose α carefully since α decides what extend valida-

tion data should be leveraged (see Table 6).

Attention Design. In order to further verify the advantage

of our method, we compare RAP against two conventional

Dataset Model Backbone Accuracy (%)

CIFAR10

Baseline

LeNet* 75.94

VGG-16* 91.48

ResNet-18* 92.68

ResNet-50* 93.02

LeNet 77.15 (↑ 1.21)

VGG-16 92.05 (↑ 0.57)

ResNet-18 93.25 (↑ 0.57)
RAP

ResNet-50 93.56 (↑ 0.54)

CIFAR100

Baseline

LeNet* 41.63

VGG-16* 67.23

ResNet-18* 72.56

ResNet-50* 74.22

LeNet 43.02 (↑ 1.39)

VGG16 68.45 (↑ 1.22)

ResNet-18 73.76 (↑ 1.20)
RAP

ResNet-50 75.36 (↑ 1.14)

STL10

Baseline

VGG-16* 74.43

ResNet-18* 78.21

ResNet-34* 76.31

VGG-16 76.16 (↑ 1.73)

ResNet-18 80.15 (↑ 1.94)RAP

ResNet-34 77.74 (↑ 1.43)

Table 4. Image classification accuracy of all models on CI-

FAR10/CIFAR100 and STL10. LeNet [26], VGG-16 [48],

ResNet-18, ResNet34 and ResNet-50 are chosen as backbones.

Baseline models are trained on both train set and validation set.

”*” indicates the result is obtained using networks implemented

by us.

5-way Acc.

Model Backbone 1-shot 5-shot

MAML [11]
Conv-4* 57.55±0.67 75.61±0.49

Conv-6* 65.07±0.72 79.89±0.48

Conv-4 61.49±0.70 77.15±0.50
RAP-MAML

Conv-6 69.95±0.68 81.48±0.44

ProtoNet [49]
Conv-4* 51.61±0.65 75.29±0.48

Conv-6* 64.72±0.72 81.35±0.43

Conv-4 56.71±0.66 78.70±0.44
RAP-ProtoNet

Conv-6 67.79±0.66 83.78±0.41

Table 5. Fair comparisons on CUB-200-2011 where baseline mod-

els are trained on both the train set and validation set like RAP

models. ”*” indicates the result is obtained using networks imple-

mented by us.

attention designs, SENet and CBAM. The policy module

of RAP is substituted by different attention mechanisms,

but the remaining settings are kept the same. As can be

seen in Table 7, models equipped with SENet and CBAM

are shown to outperform the corresponding baseline mod-

els. However, their performance do not exceed our RAP

models except that they have a nearly identical accuracy in

the 5-way 1-shot classification using the Conv-4 backbone.

Recurrent Process. A natural question is whether the re-

current modeling of reinforcement learning contributes to

the increased performance. To provide evidence that the
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5-way Acc.

Model α Backbone 1-shot 5-shot

0 Conv-4 53.83±0.66 77.10±0.46

1e-4 Conv-4 56.71±0.66 78.70±0.44

1e-2 Conv-4 44.68±0.61 71.02±0.49
RAP-ProtoNet

1 Conv-4 44.90±0.63 65.07±0.50

0 ResNet-10 72.71±0.61 86.68±0.33

1e-4 ResNet-10 75.17±0.63 88.29±0.34

1e-2 ResNet-10 72.61±0.64 85.95±0.37
RAP-ProtoNet

1 ResNet-10 66.33±0.64 80.47±0.42

Table 6. The results of 5-way classification of RAP-ProtoNet on

CUB-200-2011 using different α.

5-way Acc.

Backbone 1-shot 5-shot

SENet [17]
Conv-4* 55.18±0.61 77.07±0.46

ResNet-10* 73.89±0.57 87.32±0.38

CBAM [60]
Conv-4* 55.52±0.55 76.80±0.34

ResNet-10* 72.43±0.65 86.70±0.48

Conv-4 56.71±0.66 78.70±0.44
RAP

ResNet-10 75.17±0.63 88.29±0.34

Table 7. Few-shot classification accuracy using ProtoNet as a base-

line with different regular attention designs on CUB-200-2011.

”*” indicates the result is obtained using networks implemented

by us.

behavior of the sequential process has a positive effect, we

perform the experiments by varying the total time step T .

Under the same few-shot learning scenario, a 2-step model

and a 5-step model are compared. We can see from Ta-

ble 8 that the performance has increased nearly 1% to 2%

with the greater number of time steps. The results suggest

that our reinforced attention continuously adapt to impor-

tant information of the feature maps over time. The fact

that classification accuracy gains as more time steps of ac-

tions are executed reinforces the contribution and improve-

ment attained by the learned policy. For image classifica-

tion, we take LeNet on CIFAR10 and VGG-16 on STL10

as instantiations. The curves of the test accuracy are plot-

ted in Fig 4. Interestingly, the accuracy of the 2-step RAP

model increases as quickly as the 5-step model in the initial

epochs, but it is gradually surpassed by the 5-step model.

In our setting, the reward is closely linked to the classifica-

tion accuracy. Fig. 4 also suggests that the learned policy

maximizes the reward. The experiments strongly indicate

that reinforcement learning can effectively learn from ex-

perience in this context, and that it benefits from a greater

number of iterations.

5. Conclusion

In this paper, we propose RAP, a novel attention design

which is able to fit nicely into most few-shot learning base-

lines to refine the feature map towards a more discriminative

5-way Acc.

Model T Backbone 1-shot 5-shot

2 Conv-4 60.15±0.71 75.76±0.50

5 Conv-4 61.49±0.70 77.15±0.50

2 Conv-6 68.33±0.70 80.43±0.45
RAP-MAML

5 Conv-6 69.95±0.68 81.48±0.44

2 Conv-4 54.01±0.65 78.12±0.45

5 Conv-4 56.71±0.66 78.70±0.44

2 Conv-6 66.27±0.68 82.58±0.42
RAP-ProtoNet

5 Conv-6 67.79±0.66 83.78±0.41

Table 8. Comparisons among RAP models with different time step

T on CUB-200-2011.
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Figure 4. The recorded accuracy of image classification of LeNet

on CIFAR10 and VGG-16 on STL10.

representation. To the best of our knowledge, our approach

is the first attempt to address few-shot learning via applying

an attention mechanism trained by reinforcement learning.

We show that the reward design based on validation data en-

ables the model to learn a more diverse distribution. More

importantly, the key idea underlying our method is that the

recurrent formulation of reinforcement learning has the na-

ture of locating the available information from experience

over time and thus enables the agent to make more accurate

decisions.
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