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A B S T R A C T

This paper studies the matching problem of cross-modality video data from a discrete distribution alignment
view. Central to this discussion is the visible-infrared person re-identification (VI-reID), a crucial feature
that bolsters surveillance systems’ efficacy in monitoring individuals across diverse lighting conditions. Going
beyond traditional image-to-image matching paradigms, a recent study shows that temporal information
can bring richer cues to encode the pedestrian representation, improving the representation power of deep
neural networks. However, this integration further complicates cross-modality data matching due to the
joint processing of spatial and temporal information. This paper formulates the video data as a discrete
distribution and aligns the cross-modality video representation by reducing the matching cost between
the two distributions. To this end, a natural idea for aligning the videos is to reduce the divergence of
distributions. Moreover, the powerful optimal transport (OT) scheme, which generates the optimal matching
flows and establishes the relevance of two distributions, is also employed as a way to measure the distance of
distributions. Nevertheless, we observe that endowing the OT in the advanced VI-reID feature extractor leads
to a non-symmetric measurement. To mitigate this, the paper introduces a new metric, namely symmetric
optimal transport (SOT), reformulating OT into a symmetric form. Thorough analyses and empirical studies
affirm the superiority of the proposed SOT, which significantly outperforms the current state-of-the-art methods
according to standard benchmarking evaluations.
. Introduction

This paper studies the person re-identification (reID) problem, par-
icularly interested in the matching problem of the cross-modality video
ata from the distribution alignment view.

Person reID is an essential problem in video surveillance systems,
nd it aims to search for target pedestrians in a large database (Gong
t al., 2014; Cho et al., 2019; Li et al., 2021; Liu et al., 2023b).
his requires deep neural networks (DNNs) to create useful person
mbeddings, such that the embedding space can reveal the underlying
istribution of pedestrian data in raw image spaces, i.e., small intra-
lass variance and large inter-class variance (Ye et al., 2021b; Zheng
t al., 2016). In the past few years, the community has made significant
rogress for the person re-ID with homogeneous data (Ye et al., 2021b;
heng et al., 2016). These algorithms train the re-ID machine in the
etric learning paradigm (Weinberger and Saul, 2009; Schroff et al.,
015; Wang et al., 2017) and produce discriminative person represen-
ations in a homogeneous embedding space. However, it still remains a
ap in successfully deploying those methods in complicated real-world
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scenarios, where it requires the machine to make robust inference for
matching the pedestrian images captured by RGB and infrared cameras.

By formulating the task as a cross-modality data matching problem,
the visible-infrared person reID (VI-reID) is proposed to learn a joint
embedding space for the visible images and infrared images, making
it possible to surveillance in 24 h (Wu et al., 2017). It is not an
easy task given the challenge of large modality discrepancy between
visible images and infrared images (Wu et al., 2017), as well as the
misalignment issue-inherited in the re-ID task (Fang et al., 2019; Suh
et al., 2018). Specifically, the modality discrepancy is caused by the
diverse imaging devices and the misalignment in this task refers to
the situation where feature maps are misaligned due to spatial nu-
ances, e.g., movements of body parts, pose, background, etc. Much
effort has gone into addressing these issues. In particular, two schools
of image-to-image retrieval methods are mainly studied, including
representation-based methods (Ye et al., 2020; Tian et al., 2021; Chen
et al., 2021; Hao et al., 2021; Fu et al., 2021; Wei et al., 2020; Gong
et al., 2023; Liu et al., 2023a) and generative-based methods (Wang
et al., 2019a,b, 2020a; Choi et al., 2020; Ye et al., 2021a; Wei et al.,
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Fig. 1. The misalignment issue in the video matching task. Given two video sequences,
i.e., one visible video and one infrared video, the factors of pose, occlusion, etc. cause
the misalignment issue of matching videos.

Fig. 2. Given two video sequences, the corresponding frame features can be encoded
by the deep neural network, and such frame features can be modeled as a discrete
distribution. Then one can calculate the OT(𝛼, 𝛽) and OT(𝛽, 𝛼). Endowing the OT in the
advanced VI re-ID feature extractor leads to a non-symmetric measurement.

2021a). The representation-based methods develop advanced metric
learning approaches or neural architectures to facilitate the alignment
of two embedding spaces, while generative-based methods leverage
generators to transfer the pedestrian images from one modality to
another, such that the retrieval procedure can be realized in a common
embedding space.

Despite the promising achievement made in the existing works, it
is still far more to address the VI-reID task using the image-to-image
retrieval paradigm, due to infrared images cannot provide informative
appearance features, e.g., color, texture, etc. For example, different peo-
ple with similar wearing can be easily recognized as the same person
in infrared images. One possible solution is to leverage the video data,
i.e., the image sequences, which offers temporal information on top of
the spatial appearance information. This enables the neural network to
fuse the motion feature, jointly learned from the temporal and spatial
information, into the person embeddings, improving its discrimination.
This is first studied by Lin et al. in Lin et al. (2022). This work estab-
lishes the first video-based visible-infrared pedestrian dataset, named
HITSZ-VCM, as a benchmark for the video-based VI-reID task. On top
of the benchmark, Lin et al. further propose a modal-invariant and
temporal-memory learning (MITML) scheme to reduce the modality
variance, resulting in improvement over the baselines.

The work (Lin et al., 2022) employs the popular pipeline to produce
the video-level embedding, first extracting the frame-level features
2

and then aggregating them to a video-level feature. That said, even
though the video-level feature contains rich temporal information, the
aggregation operation will result in information loss of the original
frame features. To make use of the information flow in the video
data, a potential solution is to learn a matrix representation per video,
gaining enough information to represent the video data. Defining a
metric to measure the distance of two matrix representations is not
without difficulties and this paper addresses this issue by matching two
distributions. In doing so, this paper models the video data, i.e., matrix
representation, as a discrete distribution and realizes the video match-
ing problem in a discrete distribution alignment view. A natural idea to
align distributions is to minimize the divergence, e.g., Kullback–Leibler
divergence, Jensen–Shannon divergence, etc, between distributions.
However, such a ‘‘hard’’ measurement scheme cannot determine the
optimal matching flow between two distributions, which may lead to
misalignment of the video matching. Also, the formulation of such
divergences inherently causes numerical instability.

The optimal transport (OT) has gained interest in the learning
community as it constructs an alternative concept of distance measure-
ment between distributions and it benefits a diverse set of learning
scenarios, including visual understanding (Zhang et al., 2020), image
generation (Arjovsky et al., 2017), biological data analysis (del Barrio
et al., 2020), text understanding (Zhao et al., 2021), etc. OT defines
the distance by formulating the transportation problem, and the op-
timal transportation plan can be determined by optimizing the linear
programming problem. In this context, the determined transportation
plan yields an optimal matching flow of two distributions, which results
in the minimum matching cost. This motivates to match the video data
via optimal transport scheme, such that the misalignment issue between
videos can be mitigated (see Fig. 1). Specifically, minimizing the video
matching cost can identify both the optimal matching flow and the pa-
rameters for neural networks. However, we observe that optimization
via an OT loss cannot yield the optimal matching flow between two
distributions. This is shown in Fig. 2. Given two video sequences, the
corresponding frame features can be encoded by the deep networks.
Such frame features can be modeled as a discrete distribution. This
allows to calculate the transportation plan between two distributions,
e.g., 𝑎 and 𝑏. However, the transportation plan for OT(𝛼, 𝛽) and OT(𝛽, 𝛼)
is non-symmetric1 (see Fig. 2), leading to unstable performance in the
inference stage. This paper formulates a symmetric optimal transport
(SOT) scheme to address this issue. The contributions of this paper
are as follows:

∙ This paper formally formulates the video sequences into a dis-
crete distribution and empirically evaluates the effectiveness of
well-established distribution measurements to align the video
data.

∙ This paper further provides a good practice of distribution align-
ment by proposing a symmetric optimal transport (SOT) scheme.

∙ Thorough experiments are conducted to evaluate the effectiveness
of the proposed SOT, which attains state-of-the-art performance
on the public video VI-reID benchmark.

2. Related work

In this section, we briefly discuss the related work, including person
re-identification and optimal transport.

1 The optimal transport can be understood as a metric to calculate the
ptimal matching cost of two distributions. In other words, the optimal
atching cost for two video sequences should be symmetric, e.g., OT(𝛼, 𝛽) =

OT(𝛽, 𝛼).
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2.1. Person re-identification

As an important component in the intelligent surveillance system,
person reID has made significant improvement in the past few years.
The main goal of person reID is to create a generalizable embedding
space, such that the retrieval task can be performed well for unseen
persons in the inference stage (Ye et al., 2021b; Zheng et al., 2016). In
the deep learning ear, the community leverages the convolutional neu-
ral network (CNN) or vision transformer (ViT) to extract the person’s
appearance features and develops algorithms to improve the represen-
tation power of the backbones. Some algorithms focus on mining the
relationship of person images and develop loss functions to constrain
the optimization process (Hermans et al., 2017; Zhou et al., 2017).
Considering the content of person images, some developments employ
auxiliary information, including human poses, human attributes, and
visual attention, as cues to boost the representation power of im-
ages (Fang et al., 2019; Tay et al., 2019; Su et al., 2017; Fang et al.,
2021).

Apart from the setting of intra-modality reID, the surveillance sys-
tem is required to address the reID task in complex scenarios (Wang
et al., 2020b). Such complex scenarios contain different camera speci-
fications (e.g., low-resolution vs. high-resolution image), different sen-
sory devices (e.g., infrared light devices vs. visible light devices), and
different data formats (e.g., text description vs. digital images). This
paper particularly focuses on the setting of visible-infrared image reID.
This setting aims to learn a modality-invariant embedding space, such
that the same identity, described by heterogeneous images, can be
clustered. To this end, two learning paradigms are adopted to learn a
common embedding space for heterogeneous images.

One learning paradigm explicitly learns the modality-specific or
modality-shared features of the person images. In Wu et al. (2017),
Wu et al. augment the network to learn domain-specific features via
zero-padding to visible or infrared images. Constrained by a cross-
modality similarity preservation loss, the work in Wu et al. (2020)
enables the network to learn domain-shared features. The following
work (Lu et al., 2020) proposes the cross-modality shared-specific
feature transfer algorithm (cm-SSFT) to benefit from both modality-
specific and modality-shared features jointly. Works in Li et al. (2020)
and Wei et al. (2021b) propose to learn a middle modality, bridging
the modality gap of the images. The part features, developed for the
traditional reID task (Sun et al., 2018), is also effectiveness to present
different modalities of person images (Wei et al., 2021a). Another
learning paradigm transfers the modality of the input image to another,
such that the matching can be realized in the same modality space. The
AlignGAN translates visible images to infrared images and trains the
network to align the in both pixel level and feature level (Wang et al.,
2019a). Wang et al. adopt a similar idea to generate two modalities of
images in the same latent space (Wang et al., 2019b). The following at-
tempts either to produce the light conditions to rich person appearance
features (Wang et al., 2020a) or disentangles the light conditions and
only encode person-discriminative factors (Choi et al., 2020).

Compared to the image level VI-reID, matching the pedestrian using
video data makes this task more difficult (Lin et al., 2022). The first
attempt develops temporal memory refinement (TMR) to capture the
motion information of pedestrian video, and fuses it in the pedestrian
embedding (Lin et al., 2022). In contrast to Lin et al. (2022), we address
the video VI-reID task in the distribution alignment view.

2.2. Optimal transport

Optimal transport (OT), first proposed by Gaspard Monge in 1781
(Monge, 1781), is proposed to study the allocation of resources. It is
then formulated as a general problem of efficiently moving one distri-
bution mass to another. This, later, motivates the learning community
to explore the benefits of OT as a distance metric in various artificial in-
telligence (AI) applications, e.g., computer vision, and natural language
processing, to name but a few.
3

In the context of computer vision, OT can yield the optimal match-
ing flow of two images, avoiding the misalignment issue. An early
attempt first represents the image as a color histogram, which can be
modeled as a distribution. The OT can then be employed as the dis-
tance metric to retrieve images (Rubner et al., 2000). Instead of using
the color histogram as image representation, the semantic features,
extracted by DNNs, can also represent images in the deep learning ear.
In doing so, the works (Zhang et al., 2020; Liu et al., 2020) model
the feature map as a distribution, and leverages to address the few-
shot learning and dense correspondence problems. In Solomon et al.
(2014), an improved OT is used to calculate the distance of the discrete
surfaces. The OT can also improve the generative models, due to OT
can optimize the generator to produce data distribution like that of the
training data. This is first studied in Arjovsky et al. (2017), where the
generative adversarial network (GAN) adopts the Wasserstein distance,
benefiting the stability of learning and avoiding the collapse issue.
This idea is further elaborated in Salimans et al. (2018), Genevay
et al. (2017) and Bellemare et al. (2017), and improves the learning
behavior of GAN models. Considering the document representation as
a distribution over words, Yurochkin et al. propose hierarchical optimal
transport to measure the distance between documents (Yurochkin et al.,
2019). On top of the document representation, Zhao et al. utilize OT
to optimize neural topic models (NTM), leading to improved document
and topic representations jointly (Zhao et al., 2021). In Xu et al. (2019),
a new learning framework, namely, Gromov–Wasserstein Learning,
adopts the OT as a regularizer to establish correspondence between
graphs. In contrast to Xu et al. (2019), Kolouri calculates the OT
between a reference distribution to each node embedding, leading to an
improved and fast graph embedding learning network (Kolouri et al.,
2021). Having its efficiency in mind, this paper formally models the
video sequence as a discrete distribution, such that one can yield the
video matching issue via OT.

3. Method

This section details the proposed method: starting from the problem
formulation of the video-based VI-reID task, followed by the network
architecture as the video feature extractor. We then formally formu-
late the video sequences as a discrete distribution. Thereafter, we
discuss the well-established distribution measurements and present the
proposed method.

Notations. Formally, we use R𝑛, R𝑚×𝑛, R𝑐×𝑚×𝑛 and R𝑡×𝑐×𝑚×𝑛 to denote
-dimensional Euclidean spaces, the space of 𝑚 × 𝑛 real matrices, the
mage and video spaces. The Dirac delta function 𝛿 is defined as

𝒙 =
{

0, 𝒙 ≠ 0
∞, 𝒙 = 0

, (1)

here ∫ ∞
−∞ 𝛿𝒙𝑑𝒙 = 1. For a set of parameters, 𝑚-simplex represents the

implest possible polytope in 𝑚 dimension, defined as 𝛥𝑚−1 = {𝒔 ∈ R𝑚
+ ∶

𝑚
𝑖=1 𝑠

𝑖 = 1}. 1𝑚 ∈ R𝑚 indicates an all-ones vector, where all elements
re 1.

.1. Problem formulation

Let two fourth-order tensor, 𝑟 = [𝑽 1
𝑟 ,𝑽

2
𝑟 ,… ,𝑽 𝑇

𝑟 ] ∈ R𝑇×𝐶×𝐻×𝑊

nd 𝑟 = [𝑰1
𝑟 , 𝑰

2
𝑟 ,… , 𝑰𝑇

𝑟 ] ∈ R𝑇×𝐶×𝐻×𝑊 , denote the 𝑟th visible video
equence and infrared video sequence of a pedestrian, where 𝑇 , 𝐶,

and 𝑊 are the number of frames, channels, height and width of a
ideo sequence, respectively. The training set contains 𝑀 visible video
equences and 𝑁 infrared video sequences, described by V = {𝑟, 𝑦𝑟}𝑀𝑟=1
nd I = {𝑟, 𝑦𝑟}𝑁𝑟=1. The video-based VI-reID model, 𝑓 (⋅|𝜃), aims to

learn a feature extractor, that projects two modalities of video data
to the same embedding space, such that one can yield the task of
cross-modality video retrieval. In doing so, a proper loss function, ,
should be adopted as an objective to optimize the parameters of the
feature extractor. In this paper, we model the video sequence in the
embedding space as a discrete distribution and hence, we are interested
in aligning discrete distributions, as a contribution to the video VI-reID

community.
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Fig. 3. The pipeline of cross-modality video matching in discrete distribution alignment view. Given visible video  and infrared video  as input, the modality learning network,
(⋅|𝜃𝑣) and 𝑓 (⋅|𝜃𝑖), encode the modality features for the visible video and infrared video. Then a semantic learning network, 𝑓 (⋅|𝜃𝑠), is used to encode the semantic features for
oth modalities of data, resulting in representations of two videos, 𝑓 and 𝑓 . We model the 𝑓 and 𝑓 as discrete distributions and realize the matching problem via distribution
lignment.
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.2. Overview

We begin by providing a sketch of the DNN pipeline for the video VI-
eID task, shown in Fig. 3. In the video VI-reID task, one ideal solution
s to make use of a neural network to encode two modalities of videos
nto a joint embedding space, enabling the network to understand the
odality-invariant video representations. In the training phase, two
odalities of the video sequence are sampled as input to the neural
etwork. The neural network contains two main components, e.g., a
ow-level modality learning network and a high-level semantic learning
etwork. Specifically, given two video sequences,  = [𝑽 1,𝑽 2,… ,𝑽 𝑇 ]
nd  = [𝑰1, 𝑰2,… , 𝑰𝑇 ] with 𝑽 𝑡, 𝑰 𝑡 ∈ R𝐶×𝐻×𝑊 , two low-level modality
earning networks, 𝑓 (⋅|𝜃𝑣) and 𝑓 (⋅|𝜃𝑖), encode the modality features for
he visible video and infrared video. Of note, 𝑓 (⋅|𝜃𝑣) and 𝑓 (⋅|𝜃𝑖) do not

share the weights, such that the low-level modality learning networks
can learn modality-specific features. A followed high-level semantic
learning network, 𝑓 (⋅|𝜃𝑠), is further used to encode the modality-
shareable feature for both modalities. This process can be formulated as
𝑓 = 𝑓

(

𝑓 (|𝜃𝑣)|𝜃𝑠
)

and 𝑓 = 𝑓
(

𝑓 (|𝜃𝑖)|𝜃𝑠
)

, and produce a sequences
of frame features, as 𝑓 = [𝒗1, 𝒗2,… , 𝒗𝑇 ] and 𝑓 = [𝒊1, 𝒊2,… , 𝒊𝑇 ], where
𝑡, 𝒊𝑡 ∈ R𝑑 . We note that the feature of a video sequence can be fused
o a compact video representation, and employ the loss functions the
ptimize the network. In our work, we want to leverage the matching
ost of frame feature distributions as cues to optimize the network.
he following section will formulate the frame features as a discrete
istribution and discuss possible matching costs of distributions. Alone
ith the existing matching method, we also develop a new metric,

ermed symmetric optimal transport, as an alternative matching cost.

.3. Distribution alignment

A common practice of learning video-level embedding consists of
irst extracting the frame-level features and then aggregating them
o a video-level feature. The aggregation process inevitably causes
nformation loss of the original frame features. Our work represents
ideo data using a matrix to maximize information usage. This raises
n issue of how to learn an embedding space for matrix representations
nd the misalignment for video matching. Thus we formally model
he video representation as a discrete distribution and develop the
istribution measurement to realize the metric learning paradigm for
he matrix representations.

We first formally model the video sequence as a discrete distribu-
ion. Given a sequences of frame features,  = [𝒙𝑖]𝑚 with 𝒙𝑖 ∈ R𝑑 ,
𝑖=1 m

4

t can be assigned an empirical measurement on R𝑑 by a discrete
istribution, described as:

=
𝑚
∑

𝑖=1
𝑎𝑖𝛿𝒙𝑖 , (2)

where 𝛿 is the Dirac delta function. 𝑎𝑖 is the weight for 𝛿𝒙𝑖 , satisfying
hat 𝒂 = [𝑎𝑖]𝑚𝑖=1 ∈ 𝛥𝑚−1. This modeling allows using a discrete
istribution to represent a video sequence, such that the video matching
roblem can be transferred to the distribution measurement problem.

In the following, we discuss some well-established measurements
etween distributions, e.g., 𝛼 =

∑𝑚
𝑖=1 𝑎

𝑖𝛿𝒙𝑖 and 𝛽 =
∑𝑚

𝑖=1 𝑏
𝑖𝛿𝒛𝑖 for

= [𝒙𝑖]𝑚𝑖=1 and  = [𝒛𝑖]𝑚𝑖=1 with 𝒙𝑖, 𝒛𝑖 ∈ R𝑑 , and propose the symmetric
ptimal transport as an alternative to the distribution metric.

.3.1. Kullback–Leibler divergence
The Kullback–Leibler divergence (KLD) is a type of statistical dis-

ance, which can quantify the match of two distributions. Its effective-
ess has been used extensively as a measurement between distributions
n the learning community (Zhang et al., 2018). In this paper, we also
mploy the KLD as a candidate to measure the matching cost of two
istributions, e.g., 𝛼 and 𝛽, which can be written as:

LD(𝛼 ∥ 𝛽) =
𝑚
∑

𝑖=1
𝑎𝑖 log(𝑎

𝑖

𝑏𝑖
). (3)

3.3.2. Jensen–Shannon divergence
As suggested in Eq. (3), the KLD is asymmetric. That said, KLD is

not a valid metric for distributions. The Jensen–Shannon divergence
(JSD) is further developed on top of the KLD and its symmetric property
makes it a valid metric. It is also known as a total divergence to the
average. The JSD is given by:

JSD(𝛼 ∥ 𝛽) = 1
2
(

KLD(𝛼 ∥ 𝛽) + KLD(𝛽 ∥ 𝛼)
)

= 1
2
(

𝑚
∑

𝑖=1
𝑎𝑖 log(𝑎

𝑖

𝑏𝑖
) +

𝑚
∑

𝑖=1
𝑏𝑖 log( 𝑏

𝑖

𝑎𝑖
)
)

.
(4)

The JSD is symmetric since it holds that JSD(𝛼 ∥ 𝛽) = JSD(𝛽 ∥ 𝛼).
n practice, both the KLD and JSD suffer from the issue of numerical
nstable when the denominator in Eqs. (3) and (4) is a tiny value.

.3.3. Maximum mean discrepancy
The maximum mean discrepancy (MMD) is a kernel-based statistical

easurement to determine the difference between two distributions.
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As compared to KLD and JSD, MMD can enjoy the rich representation
power of the kernel method. MMD is formulated as:

MMD(𝛼, 𝛽) = 1
𝑚2

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
𝑘(𝒙𝑖,𝒙𝑗 )

− 1
𝑚2

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
𝑘(𝒙𝑖, 𝒛𝑗 ) +

1
𝑚2

𝑚
∑

𝑖=1

𝑚
∑

𝑗=1
𝑘(𝒛𝑖, 𝒛𝑗 ),

(5)

where 𝑘(⋅, ⋅) is a kernel function. In this paper, we use the popular RBF
kernel, as 𝑘(𝒙, 𝒛) = exp

(

− ‖𝒙−𝒛‖2
𝜎

)

.

.3.4. Optimal transport
The optimal transport (OT) scheme is first formulated to identify the

ptimal transportation plan for resource allocation (Monge, 1781). It is
hen formulated to measure the distance between pairs of probability
istributions (Arjovsky et al., 2017). In this part, we introduce Wasser-
tein (WS) distance for OT and the Sinkhorn algorithm to estimate the
S distance. Given two discrete distributions, e.g. 𝛼 = and 𝛽, one can

calculate WS distance as the optimal matching cost. Specifically, let
𝑑𝑖𝑠𝑡 ∶ R𝑑 × R𝑑 → R+ be the distance metric defined on R𝑑 , the WS
istance is given by:

T(𝛼, 𝛽) ∶= 𝑊 (𝛼, 𝛽) = min
𝑷∈𝛤 (𝛼,𝛽)

⟨𝑷 ,𝑫⟩, (6)

where 𝑷 and 𝛤 (𝛼, 𝛽) = {𝑷 ∈ R𝑚×𝑚
+ ∶ 𝑷1𝑚 = 𝒂,𝑷 ⊤1𝑚 = 𝒃} denote trans-

ortation plan and transportation polytope, respectively. In Eq. (6), 𝑫 is
the distance matrix with each element being 𝑫 = [𝑑𝑖𝑠𝑡(𝒙𝑖, 𝒛𝑗 )]

𝑚,𝑚
𝑖=1,𝑗=1. In

this paper, the distance metric is specified as 𝑑𝑖𝑠𝑡(𝒙𝑖, 𝒛𝑗 ) = 1−cos(𝒙𝑖, 𝒛𝑗 ),
where cos(⋅, ⋅) ∈ [−1, 1] is the cosine similarity. Solving the optimization
problem in Eq. (6) requires costly linear programming. The Sinkhorn
algorithm (Cuturi, 2013) can estimate the WS distance fast by adding
an entropy regularization, formulated as:

𝑊 (𝛼, 𝛽) = min
𝑷∈𝛤 (𝛼, 𝛽)

{

⟨𝑷 ,𝑫⟩ − 𝜂E(𝑷 )
}

, (7)

where E(𝑷 ) is the entropy regularization, defined as:

E(𝑷 ) = −
𝑚,𝑚
∑

𝑖=1, 𝑗=1
𝑷 𝑖,𝑗 (log𝑷 𝑖,𝑗 − 1), (8)

and 𝜂 > 0 is the entropy regularization weight. The optimization of
Sinkhorn algorithm is realized by alternatively updating 𝛼 = 𝒂∕𝑺𝛽 and
𝛽 = 𝒃∕𝑺𝛼, where 𝑺 = exp(𝐷) ∈ R𝑚×𝑚

+ and ∕ is the elementwise divi-
sion. After updating the algorithm, one can finally obtain the optimal
transportation plan 𝑷 ∗ = diag(𝛼∗)𝑺diag(𝛽∗).

Of note, the Sinkhorn distance has a unique optimal solution due to
the strong concavity of the entropy regularization.

3.3.5. Symmetric optimal transport
Since the Sinkhorn distance can figure out an optimal WS distance

for two distributions, it holds that the optimal transportation plan for
OT(𝛼, 𝛽) and OT(𝛽, 𝛼) should be symmetric. However, in practice, we
observe that the transportation plan for two OTs is non-symmetric,
since the optimization of a DNN cannot reach the global optimum.
It causes unstable performance of the DNN, leading to a significant
performance drop. This is justified by the empirical study in Section 4.
This issue also indicates that it is not good for OT to be a candidate as
a metric in our specific application, in the scene where the symmetric
property is essential for a valuable metric. Building on this, we believe
the video-based VI-reID is a difficult task and it is a non-trivial con-
tribution to bring performance gain via modifying the OT. We address
this by developing symmetric optimal transport (SOT), formulated as:

SOT(𝛼, 𝛽) ∶= 1
2
(

𝑊 (𝛼, 𝛽) +𝑊 (𝛽, 𝛼)
)

. (9)

The physical interpretation of the proposed SOT is to identify the
matching flow in two directions, and it is obvious that the proposed
SOT is a valid metric as it holds that SOT(𝛼, 𝛽) = SOT(𝛽, 𝛼). We also
empirically justify that the proposed SOT can work effectively as a way
5

Fig. 4. Comparison of the distribution matching methods. (a) shows the matching
paradigm of the most distribution measurement. The OT, shown in (b) realizes the
optimal matching between two distributions.

to align two video sequences. In other words, the proposed SOT not
only realizes a valid metric for our task but also offers a good practice
of OT scheme in the challenging video-based VI-reID task. One can yield
the approximation of SOT using Sinkhorn since it calculates the OT in
two directions. Specifically, this is formulated as

SOT(𝛼, 𝛽) = 1
2
(

𝑊 (𝛼, 𝛽) +𝑊 (𝛽, 𝛼)
)

= min
𝑷∈𝛤 (𝛼, 𝛽)

{

⟨𝑷 ,𝑫⟩ − 𝜂E(𝑷 )
}

+ min
𝑷 ′∈𝛤 (𝛽, 𝛼)

{

⟨𝑷 ′,𝑫′
⟩ − 𝜂E(𝑷 ′)

}

.

(10)

Then each of the minimization process can be optimized individually
via alternatively updating (𝛼, 𝛽).

3.4. Optimization

In this paper, the discussed alignment methods are adopted as a
component of the loss function, undertaking the role to optimize the
neural network. We use the KLD as an example. Suppose 𝛼 ∶= 𝑓 =
𝑓
(

𝑓 (|𝜃𝑣
)

|𝜃𝑠) and 𝛽 ∶= 𝑓 = 𝑓
(

𝑓 (|𝜃𝑖
)

|𝜃𝑠), the loss is given by  =
LD(𝛼, 𝛽). The optimization is formulated as:
∗
𝑣 , 𝜃

∗
𝑖 , 𝜃

∗
𝑠 = argmin

𝜃𝑣 , 𝜃𝑖 , 𝜃𝑠

(

KLD(𝛼, 𝛽)
)

. (11)

Learning from the OT and SOT as a loss function can be formulated
as a bi-level optimization problem. Given the loss  = OT(𝛼, 𝛽) as an
example, the bi-level optimization process can be formulated as follows:

𝜃∗𝑣 , 𝜃
∗
𝑖 , 𝜃

∗
𝑠 = argmin

𝜃𝑣 , 𝜃𝑖 , 𝜃𝑠

(

argmin
𝑷

(

⟨𝑷 ,𝑫⟩

)

)

, (12)

where 𝑷 and 𝑫 are transportation plan and distance matrix respec-
tively.

Remark 1. This paper addresses the video VI-reID task by modeling the
video sequence as a discrete distribution and aligning the distributions.
In this section, we discuss the possible alignment distribution methods,
that can be used as a loss constraint to optimize the network. The
KLD, JSD, and MMD are very popular methods that aim to push two
distributions close, without considering the matching flow of two distri-
butions. In contrast to these ‘‘hard alignment’’ solutions (see Fig. 4(a)),
OT becomes a reliable method that not only ensures numerical stability
as a metric but also realizes an optimal matching flow between distri-
butions. This suggests employing this ‘‘soft alignment’’ solution as an
alternative method to matching the video sequences (see Fig. 4(b)).

4. Experiments

4.1. Datasets and evaluation metric

Video VI-reID is a new task and only the HITSZ Video Cross-

Modal (HITSZ-VCM) dataset is available as the benchmark for this
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Fig. 5. Video frames sampled from the pedestrian video sequences in the HITSZ-VCM
dataset. These six video sequences, captured by different cameras, share the same
person identity.

task, thus all studies throughout this paper are conducted on the
HITSZ-VCM dataset. This dataset contains 251,452 visible images and
211,807 infrared images, constructing 11,785 and 10,078 video track-
lets. Each modality of video data has 927 person identities. Multiple
non-overlapped cameras are employed to capture each person in a dif-
ferent view, providing a rich appearance for each person. This dataset is
captured by 12 HD cameras and covers a series of scenes, e.g., 7 outdoor
scenes, 3 indoor scenes, and 2 passages scenes. Those scenes include the
office, cafe, garden, etc. Fig. 5 illustrates the samples of video sequences
captured by different cameras. In the inference phase, a trained neural
network is evaluated by two retrieval modes, e.g., Infrared to Visible
mode and Visible to Infrared mode.

In person re-ID task, two popular metrics are commonly used to
evaluate the performance of algorithms, e.g., cumulative matching
characteristic (CMC) curve and mean average precision (mAP). For a
given query sample, the CMC curve shows the correct matching rate
at various ranks, whereas the mAP value indicates the overall ranking
performance. In this paper, both two metrics are adopted to evaluate
the video-based VI-re-ID machine.

4.2. Implementation details

We implement our algorithm in the PyTorch (Paszke et al., 2017)
and all experiments are performed on NVIDIA 3090 GPUs. We use
MITM (Lin et al., 2022) as a baseline to evaluate our method. For
each video clip, we 𝑇 = 6 in all experiments. Each frame is resized to
288 × 144. The data augmentations used in our experiments include
zero-padding and randomly flipping in the horizontal direction. The
batch size is set to 8 for each modality of video data. The network is
optimized by SGD optimizer, where the weight decay and momentum
are set to 5 × 10−4 and 0.9. The warmup strategy is also employed for
the learning rate adaptation. The learning rate is initialized to 0.1, and
decayed at the 35th and 80th epochs with a factor of 0.1.

4.3. Ablation study

In this part, we first conduct extensive studies to explore the benefits
of the proposed symmetric optimal transport in the video VI-reID task.

4.3.1. Analysis of the non-symmetric OT
Given two video sequences with each belonging to one modality,

one can identify an optimal transportation plan, realizing a minimal
matching cost in the raw image space. To align the cross-modality
data, a non-linear function is employed to project the video data to
an embedding space. That said, the same transportation plan can be
identified in the embedding space, resulting in a minimal matching
cost. It holds that 𝑷 ∗ = 𝑷 ∗ , where 𝑷 ∗ = argmin

(

OT( ,)
)

img feat img 𝑷 img
d

6

Fig. 6. The visualization of the transportation plan for the 𝑊 (𝑓 ,𝑓 ) and 𝑊 (𝑓 ,𝑓 )
sing a common feature extractor. In (a) and (b), the color per element indicates the
alue of the transportation plan, and a darker color indicates a larger value. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

Table 1
Evaluation of the modality learning network on HITSZ-VCM dataset. We use the bold
to indicate the best result.

Models Infrared to Visible Visible to Infrared

R-1 mAP R-1 mAP

w/ modality learning 63.74 45.31 64.54 47.69
w/o modality learning 58.27 40.38 60.02 43.24

Table 2
Comparison of the performance of OT(𝛼, 𝛽) and OT(𝛽, 𝛼) on HITSZ-VCM dataset.

Models Infrared to Visible Visible to Infrared

R-1 mAP R-1 mAP

Baseline 63.74 45.31 64.54 47.69

OT(𝛼, 𝛽) 62.61 45.24 65.46 47.88
OT(𝛽, 𝛼) 63.02 46.06 61.60 41.89

and 𝑷 ∗
feat = argmin𝑷 feat

(

OT(𝑓 ,𝑓 )
)

. In this optimal solution, the
Wasserstein distance should be symmetric in the embedding space,
e.g., 𝑊 (𝑓 ,𝑓 ) = 𝑊 (𝑓 ,𝑓 ).

Theoretically, once two modalities of video are encoded by the same
embedding function (e.g., 𝑓 (⋅|𝜃𝑣) = 𝑓 (⋅|𝜃𝑖)), the Wasserstein distance
s symmetric, leading to a symmetric transportation plan, as shown in
ig. 6. However, the video VI-reID task is a challenging task and recent
tudies show that the modality learning networks, e.g., 𝑓 (⋅|𝜃𝑣) and
𝑓 (⋅|𝜃𝑖) in Fig. 3, are required to learn the low-level domain knowledge
er modality. As shown in Table 1, the modality learning network
ontributes considerably to the feature embedding function in the video
I-reID task (Ye et al., 2021b, 2020).

Even though this modality learning network plays a vital role in the
eature embedding, it raises an issue that such a neural architecture (see
ig. 3) results in a non-symmetric transportation plan, as observed in
ig. 2. This issue results in the unstable performance of the network.
pecifically, for two distributions 𝛼 and 𝛽, we optimize the network by
ither OT(𝛼, 𝛽) or OT(𝛽, 𝛼), and the result is reported in Table 2. It shows
hat both OT(𝛼, 𝛽) and OT(𝛽, 𝛼) have difficulties bringing performance
ain consistently, and adopting the OT directly cannot improve the
erformance, again showing that the video-based VI-reid is a difficult
roblem.

.3.2. Evaluation on different alignment methods
In the above part, we analyze that vanilla OT cannot be adopted

n the existing SOTA models. This part continues to show the proposed
OT can attain superior performance than the well-established distribu-
ion alignment methods. Specifically, we employ the Kullback–Leibler
ivergence (KLD), Jensen–Shannon divergence (JSD), maximum mean
iscrepancy (MMD), vanilla optimal transport (OT), and the proposed
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Table 3
Comparison with different distribution alignment methods on HITSZ-VCM dataset. We
use the bold to indicate the best result.

Models Infrared to Visible Visible to Infrared

R-1 mAP R-1 mAP

Baseline 63.74 45.31 64.54 47.69

KLD 63.98 44.81 64.50 47.24
JSD 61.65 45.00 64.82 48.22
MMD 64.26 45.92 65.22 47.80
OT 62.61 45.24 65.46 47.88
SOT 64.97 47.74 67.93 49.67

Fig. 7. Comparison with different weights of symmetric optimal transport loss on
ITSZ-VCM dataset. This study is evaluated on both ‘‘Visible to Infrared’’ and ‘‘Infrared

o Visible’’ retrieval settings.

ymmetric optimal transport (SOT), in this study. It is noted that
hose methods are used as a component in the loss function. The
esult is reported in Table 3. We can find that those existing methods
annot bring consistent performance gain over the two retrieval modes,
.g., infrared to visible and visible to infrared modes. This shows that
ideo VI-reID is a challenging task. Also noted, the vanilla OT only
rings performance gain on the ‘‘Visible to Infrared’’ mode, showing
he unstable inference from the network. In the meantime, this study
lso reveals that the proposed SOT can improve the baseline network
onsistently, clearly showing the superiority of the proposed method.
s compared to the vanilla OT method, our method demonstrates its
ffectiveness, justifying that we make a good practice of distribution
lignment using the SOT scheme.

It is noted that the simple MMD can achieve an overall best perfor-
ance than the well-establish ‘‘measurement’’. However, the proposed

OT is better than the MMD, especially in the ‘‘Visible to Infrared’’
ode, where the SOT outperforms the MMD by 2.71%/1.87% on
-1/mAP. This shows the superiority of the proposed SOT.

We also provide the difference of the intra/inter-class variance to
nterpret the performance gain of our method. Specifically, given the
imilarity distribution of positive and negative pairs, the intra/inter-
lass variance is the distance of medium value between two distribu-
ions. Our method can improve the distance by 0.24 over that of the
aseline, showing that our method can enlarge the margin between
ntra/inter-class variance.

.3.3. Evaluation on different weights
In our practice, the distribution alignment method is employed as

component of the loss function, thereby constraining the parameter
pdating in the back-propagation procedure. In this context, one needs
o identify a proper value to weigh the loss component. In doing so,
e conduct an empirical study to choose the weight value as shown

n Fig. 7. Figs. 7(a) and 7(b) illustrate the retrieval performance w.r.t.
o different weight values in ‘‘Infrared to Visible’’ setting and ‘‘Visible
nd Infrared’’ setting, respectively. It shows that in both settings, the
etwork achieves the best performance when the weight value is 1.75.

hroughout this paper, the weight value for the SOT is set to 1.75.

7

Fig. 8. The convergence property of the loss function. We compare the convergence
curves of loss from baseline and our method.

4.3.4. Convergence property of loss
In this part, we study the convergence property of the loss. Specif-

ically, we visualize the convergence curves of the loss functions for
baseline vs. +SOT, as shown in Fig. 8. It shows that even though the
loss value of SOT is very large, it convergences faster than the loss in
the baseline network, indicating that it does not increase the training
difficulties to optimize the network using the proposed SOT and the
proposed scheme for distribution measurement is suit for our task.

4.3.5. Evaluation on various baseline networks
We continue to study the generalization of the proposed SOT by

evaluating its effectiveness on various baseline networks. Specifically,
three baselines, e.g., VI-ResNet-50, VI-GLTR, MITM, are adopted in this
study. All baselines are pre-trained on ImageNet (Russakovsky et al.,
2015). The VI-ResNet-50 is derived from the ResNet-50 (He et al.,
2016). In doing so, the convolutional block, i.e., conv1, is instantiated
to low-level modality learning networks, i.e., 𝑓 (⋅|𝜃𝑣) and 𝑓 (⋅|𝜃𝑖). The
ollowing residual blacks, e.g., conv2_x to conv5_x, are instantiated to
he high-level feature learning network, e.g., 𝑓 (⋅|𝜃𝑠). Then the proposed
OT is further adopted as one of the loss components to optimize the
etwork. The GLTR, which is short for global-local temporal representa-
ion, is first proposed for the video person reID task (Li et al., 2019). To
dapt the GLTR for the video VI-reID task, a minor modification is re-
uired. To this end, the backbone network of the GLTR, e.g., ResNet-50,
hould be split into two parts, a low-level modality learning network,
nd a high-level feature learning network, as the modification in VI-
esNet-50 discussed above. The most SOTA method, MITM, is proposed

or the video VI-reID task, such that it can be used to evaluate the
roposed SOT directly.

Fig. 9 illustrates the improvement of the SOT on top of various
aselines. It shows that the proposed SOT scheme can bring consistent
mprovements in ‘‘Infrared to Visible’’ retrieval mode (see Figs. 9(a) and
(b)) and ‘‘Visible to Infrared’’ retrieval mode (see Figs. 9(c) and 9(d))
cross all baselines. It reveals that the proposed SOT is an effective yet
lexible method.

.3.6. Evaluation on the robustness
We further show the robustness property of our method. Table 4

ndicates that the performance of the network incorporated with the
ptimal transport (OT) is unstable since the performance of OT(𝛼, 𝛽)
nd OT(𝛽, 𝛼) various significantly, while the proposed SOT attains
table performance for SOT(𝛼, 𝛽) and SOT(𝛽, 𝛼), showing the superiority
nd robustness of the proposal.

To further evaluate its robustness, we evaluate the methods using
oise labels. Specifically, we add 20% noise to the label. The perfor-
ance drop w.r.t. R-1/mAP value of the baseline and our method reads

s 10.62%/8.62% vs. 6.24%/5.80%, clearly showing the robustness of
ur method.
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Fig. 9. Evaluation of the proposed symmetric optimal transport on various baseline
etworks. This study is evaluated on both ‘‘Visible to Infrared’’ and ‘‘Infrared to Visible’’
etrieval settings.

Table 4
Comparison of the robustness of OT and SOT on HITSZ-VCM dataset.

Models Infrared to Visible Visible to Infrared

R-1 mAP R-1 mAP

Baseline 63.74 45.31 64.54 47.69

OT(𝛼, 𝛽) 62.61 45.24 65.46 47.88
OT(𝛽, 𝛼) 63.02 46.06 61.60 41.89

SOT(𝛼, 𝛽) 64.97 47.74 67.93 49.67
SOT(𝛽, 𝛼) 64.82 47.48 68.12 50.21

4.4. Comparison to state-of-the-art methods

In Section 4.3, extensive studies are conducted to evaluate the ef-
fectiveness of the proposed method. To further evaluate its superiority,
we compare our method to the SOTA models. In doing so, we compare
our method to LbA (Park et al., 2021), MPANet (Wu et al., 2021),
DDAG (Ye et al., 2020), VSD (Tian et al., 2021), CAJL (Ye et al.,
2021a) and MITM (Lin et al., 2022). LbA addresses the alignment
issue by exploiting the dense correspondence between cross-modal
person images, such that suppressing the domain features of two modal-
ities (Park et al., 2021). In MPANet, the alignment is realized by
discovering cross-modality nuances, following two steps: dislodging the
modality information and aligning the patterns (Wu et al., 2021). In
DDAG, both the part level and contextual level are leveraged to jointly
learn discriminative person representation and mitigate the modality
effects (Ye et al., 2020). Learning the representation from the infor-
mation bottleneck view, VSD creates the embedding space by fitting
8

the mutual information (Tian et al., 2021). Considering the imagery
property of the visible image and infrared image, CAJL develops a data
augmentation to homogeneously generate color-irrelevant images by
randomly exchanging the color channels. It is noted that these methods
are initially developed for the image-level VI-reID task. The most recent
SOTA model, i.e., MTIM, is tailored for the video VI-reID task and
the property of the video data motivates to develop of a temporal-
memory mechanism, that produces the motion-invariant embedding for
the video data (Wu et al., 2021).

The comparison is made in Table 5. It shows that our work out-
performs existing SOTA methods and attains a new SOTA performance
in the video VI-reID task. For example, in the ‘‘Infrared to Visible’’
retrieval mode, our method outperforms the MITM by 1.23%/2.43%
on R-1/mAP values. In another mode, our method also outperforms
the MITM and the improvement reads as 3.39%/1.98% on R-1/mAP
values. This indeed shows the superiority of our proposal in this paper.

4.5. Evaluation on other applications

The SOT is proposed to identify the optimal matching flow between
two distributions in two directions. That said, one can model any
modality of data to a distribution and adopt the proposed method
to align any two distributions. Along with the evaluation of video-
based VI-reID in the main paper, we further evaluate the effectiveness
of the proposed SOT on the image-based VI-reID per the comment.
Specifically, our evaluation is conducted on standard benchmarks,
i.e., SYSU-MM01 (Wu et al., 2017) and RegDB (Nguyen et al., 2017)
datasets. We follow the common practice to evaluate our method in
both R-1 and mAP values (Ye et al., 2020). The result is reported in
Tables 6 and 7. It shows that the proposed SOT can work effectively
in the image-based VI-reID task and bring consistent performance gain
over the baseline on both SYSU-MM01 and RegDB datasets.

We also evaluate the effectiveness of the proposed SOT by com-
paring it with classic VI-reID methods including FBP-AL (Wei et al.,
2021a), NFS (Chen et al., 2021), RBDF (Wei et al., 2022), CM-NAS (Fu
et al., 2021), SMCL (Wei et al., 2021b) and CAJL (Ye et al., 2021a).
The comparison is made in Tables 6 and 7. It shows that our method
attains a very competitive performance compared to the SOTA meth-
ods. Especially in the RegDB dataset, our method can significantly
improve the SOTA performance, vividly showing the superior property
and generalization of our method.

5. Conclusion

In this paper, we study the video-based visible-infrared person
re-identification task. This is a video-matching problem with heteroge-
neous data formats. Either learning modality-invariant person features
or exploring the temporal information in the video embedding can be
an option to address this task. This paper considers addressing the
video-matching problem via determining the optimal matching flow
between videos. In doing so, we formulate the video clip as a discrete
distribution formally and align the distributions with divergence or dis-
tance metrics. Empirical studies show that the existing well-established
distribution alignment methods, including the optimal transport, have
Table 5
Comparison with the state-of-the-art algorithms on HITSZ-VCM dataset. We use the bold to indicate the best result.

Models Venue Infrared to Visible Visible to Infrared

R-1 R-5 R-10 R-20 mAP R-1 R-5 R-10 R-20 mAP

LbA (Park et al., 2021) ICCV’21 46.38 65.29 72.23 79.41 30.69 49.30 69.27 75.90 82.21 32.38
MPANet (Wu et al., 2021) CVPR’21 46.51 63.07 70.51 77.77 35.26 50.32 67.31 73.56 79.66 37.80
DDAG (Ye et al., 2020) ECCV’20 54.62 69.79 76.05 81.50 39.26 59.03 74.64 79.53 84.04 41.50
VSD (Tian et al., 2021) CVPR’21 54.53 70.01 76.28 82.01 41.18 57.52 73.66 79.38 83.61 43.45
CAJL (Ye et al., 2021a) ICCV’21 56.59 73.49 79.52 84.05 41.49 60.13 78.96 82.98 87.10 42.81
MITM (Lin et al., 2022) CVPR’22 63.74 76.88 81.72 86.28 45.31 64.54 78.96 82.98 87.10 47.69

Ours This work 64.97 78.12 82.81 86.87 47.74 67.93 81.07 84.94 88.59 49.67
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Table 6
Comparison with the state-of-the-art algorithms on SYSU-MM01 dataset.
Models All search Indoor search

R-1 mAP R-1 mAP

FBP-AL (Wei et al., 2021a) 54.14 50.20 73.98 50.20
NFS (Chen et al., 2021) 56.91 55.45 62.79 69.79
RBDF (Wei et al., 2022) 57.66 54.41 – –
CM-NAS (Fu et al., 2021) 61.99 60.02 67.01 72.95
SMCL (Wei et al., 2021b) 67.39 61.78 68.84 75.56
CAJL (Ye et al., 2021a) 69.88 66.89 76.26 80.37

Baseline 66.71 64.71 72.73 77.63
+ SOT 68.72 66.80 76.96 79.64
Table 7
Comparison with the state-of-the-art algorithms on RegDB dataset.
Models Visible to Infrared Infrared to Visible

R-1 mAP R-1 mAP

NFS (Chen et al., 2021) 80.54 72.10 77.95 69.79
FBP-AL (Wei et al., 2021a) 73.98 68.24 70.05 66.61
RBDF (Wei et al., 2022) 79.80 76.71 76.21 73.92
SMCL (Wei et al., 2021b) 83.93 79.83 83.05 78.57
CM-NAS (Fu et al., 2021) 84.54 80.32 82.57 78.31
CAJL (Ye et al., 2021a) 85.03 79.14 84.75 77.82

Baseline 90.57 83.05 90.32 82.95
+ SOT 92.76 86.07 93.67 86.30
difficulties bringing performance gain consistently over different re-
trieval modes. Given this, we further propose a symmetric optimal
transport scheme as a better way to align distributions. Thorough
empirical results justify the effectiveness of the proposed methods. We
believe our idea will be a promising direction for the video-matching
problem. Even though the proposed method reports the SOTA result,
the retrieval accuracy is still low, and more effort is required to develop
new methods.

In the future, we will work on alternative solutions, which consider
the geometric distribution of video frames, to align the video data, and
improve the retrieval performance of the network.
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