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Abstract

Current NLP techniques have been greatly ap-
plied in different domains. In this paper, we
propose a human-in-the-loop framework for
robotic grasping in cluttered scenes, investi-
gating a language interface to the grasping
process, which allows the user to intervene
by natural language commands. This frame-
work is constructed on a state-of-the-art grasp-
ing baseline, where we substitute a scene-
graph representation with a text representa-
tion of the scene using BERT. Experiments
on both simulation and physical robot show
that the proposed method outperforms conven-
tional object-agnostic and scene-graph based
methods in the literature. In addition, we find
that with human intervention, performance can
be significantly improved. Our dataset and
code are available on our project website1.

1 Introduction

Grasping (Mahler et al., 2019) is a fundamental
task for robot systems. It is useful for warehousing,
manufacturing, medicine, retail, and service robots.
One setting in robotic grasping is to grasp object
orderly without disturbing the remaining in clut-
tered scenes (Chen et al., 2021b; Mees and Burgard,
2020; Zhang et al., 2021a) (called collision-free
grasp). To solve this problem, a typical method
(Zhu et al., 2021) parses the input into a scene
graph first (Figure. 1(b)), in order to infer the spa-
tial relation between objects and select a collision-
free object for grasping. In particular, as shown in
Figure. 2(a), nodes in a scene graph represent ob-
jects and edges represent their spatial relationship.
Such structural knowledge can effectively improve
the grasping performance as compared to an end-
to-end model without scene structure information
(Chu et al., 2018) (Figure. 1(a)).

∗ Corresponding Author
1https://sites.google.com/view/

hitl-grasping-bert

Figure 1: Various model structures for robotic grasp-
ing. (a) End2End (Chu et al., 2018) outputs an object-
agnostic grasping by directly modeling on the input im-
ages. (b) Scene-Graph Representation fuses a gener-
ated scene graph with visual feature to predict grasp-
ing. (c) Scene-Text Representation (ours) makes use
of language scene description and visual feature for
achieving collision-free grasping.

As a structured representation of the scene, the
scene graph has a few limitations. For example, it
can be costly to manually label scene graphs, and
the amount of existing labeled data is quite small.
In practice, due to variance in the working environ-
ment, it can be necessary to calibrate a scene under-
standing model when deployed on physical robots
(Zhu et al., 2021). This problem can be regarded
as a domain adaptation task, which requires a cer-
tain amount of labeled scene graph data (Xu et al.,
2017). In addition, graphs are relatively abstract
and thus inconvenient for human-robot interaction.

We consider a natural language representation
of the scene for substituting a scene graph struc-
ture representation. As shown in Figure. 2(a),
small texts such as “notebook placed under pli-
ers” and “apple on notebook” are used to indi-
cate the recognized objects and their stacking re-
lations. Compared with a scene graph structure,
natural language scene representation has the fol-
lowing advantages. First, the cost of manual label-
ing is relatively lower thanks to the availability of
speech recognition systems (Chiu and Raffel, 2018)
and the relative independence from labeling GUI
(Srivastava et al., 2021). Second, the state-of-the-
art pre-trained representation models (Kenton and
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Toutanova, 2019; Radford et al., 2019) can be used
to improve scene understanding, which contains
external knowledge beyond a scene graph structure.
Third, online human interaction can be achieved by
using human input of the natural language scene
representation to replace incorrect robot scene un-
derstanding through speech communication2.

As shown in Figure. 1(c), we adopt the model of
Zhu et al. (2021) by substituting the scene graph
with a text description of the object to grasp and
its spatial context, and using a neural image-to-text
model for scene understanding and a pre-trained
language model to represent the scene text for vi-
sual language grounding in subsequent grasping
decisions. We compare the model performance
with a dominant two-stage end-to-end planar grasp-
ing baseline (Chu et al., 2018) (Figure. 1(a)) and
the baseline scene graph model (Figure. 1(b)). For
all models, the grasping backbone is implemented
using an extended version model of (Chu et al.,
2018) with extra scene knowledge input.

For training and evaluation, we make extensions
to the Visual Manipulation Relationship Dataset
(VMRD) (Zhang et al., 2019b) by manually adding
text descriptions and scene graphs to the scenes, re-
sulting in a new dataset L-VMRD, as shown in Fig-
ure. 2(a). Experimental results show that (1) human
language description can be a highly competitive
alternative to the scene graph representation, giving
better results for grasping; (2) online human lan-
guage intervention is useful for improving the final
grasping results, which is a new form of human-in-
the-loop grasping. This indicates the promise of
NLP models, especially pre-trained language mod-
els, for human-robot interaction. To our knowledge,
we are the first to consider explicit textual scene
representation and human intervention correction
for robot grasping decisions, where BERT (Ken-
ton and Toutanova, 2019) is firstly introduced into
the internal structure of a robotic model as a state
representation.

2 Task and Dataset

The input of the robotic grasping task is an image
from robotic camera observation and the output
is a grasping configuration (a grasping bounding
box). As shown in Figure.1(c), we introduce a
language description for the scene (image) during
the inference process. We take a human-in-the-

2We adopt the typed text to simulate the process here
since voice recognition is beyond our research scope

(a) Overview of proposed dataset L-VMRD

(b) Relationship tree & Scene graph.
Figure 2: (a): L-VMRD is built on VMRD. We ex-
tend (i) scene language description, (ii) scene graph and
(iii) surface per grasp, including 112, 965 scene object
relationship expressions and 21, 713 surface attributes
paired with grasp bounding boxes. (b): relationship
tree vs. scene graph.

loop setting, where the language description can be
obtained from a scene understanding model (Self-
explanation) or human (Human-intervention).

Existing grasping datasets (e.g., VMRD Zhang
et al. (2019b)) cannot be employed directly, be-
cause they do not include scene knowledge in hu-
man language. Hence, we develop an extended
language version of VMRD, named L-VMRD, to
evaluate our method. L-VMRD is an integrated
dataset, and each sample is organized as a 6-tuple
(image, language descriptions, scene graph, ob-
ject bounding box, grasping bounding box, sur-
face) shown in Figure. 2. L-VMRD contains
4, 676 samples, and is split into (train/validate/test)
= (3, 740/468/468). The detail of dataset gener-
ation and usage in modeling are demonstrated in
Appendix A.1.1 and A.1.2. Below we describe the
main extensions from VMRD (Figure.2(a)).

Language Description in L-VMRD Object
pairs in an image are sampled and labeled with
a scene description. There exist many factors that
affect collision-free grasping, in which stacking
is the most significant one (Avigal et al., 2021).
We first label the objects with the stacking rela-
tionship, e.g., “apple on notebook” or “notebook
sitting under pliers” in Figure. 2(a), and then label



Figure 3: Overview of our proposed model. Firstly, a scene image is given to a human and an image-to-text model
to generate a scene description. Secondly, scene description is fed into a BERT-based language grounding model
to select a collision-free object. Thirdly, the grounded object is as the internal result fused into the language-based
grasping model.

the horizontal relationship between non-stacked.
Then considering the distribution of the horizontal
relationships (“left”, “right”, “front”, “back”) in
our dataset, we use “left” and “right” to indicate
the scene relationships.

Scene Graph The original VMRD dataset in-
cludes partial relationships for adjacent objects,
encoded by a relationship tree that only reveals the
stacking relationship between two objects but is not
able to indicate the relationship between objects
stacked directly. To facilitate inference, we add a
full scene graph to encode the pair-wise relation-
ships of objects per image, where nodes and edges
present objects and relationships, respectively. De-
tail is available in Appendix A.1.3.

Grasp-wise Spatial Attribute We introduce
each grasp bounding box with a new attribute
named surface. It is a binary variable indicating
whether the grasped object sits on the top (True –
on the top, False – stacked by other objects.). It is
a grasp-wise label and can improve the robustness
of the grasping model. An example is available in
Appendix A.1.4.

3 Our Approach

The overall framework is shown in Figure. 3. The
input scene image is fed into convolutional-based
grasping model (Sec. 3.1) and scene understanding
model (Sec. 3.2; Sec. 3.3), respectively. The scene
understanding model is an image-to-text compo-
nent that produces a sentence that describes the ob-
ject to grasp and its context, such as “toothpaste put
above box”. That scene description is then fused

with intermediate grasping results to select object-
related grasping candidates by pre-trained language
model and language grounding model. The final
grasping output is selected with high probability
after re-optimization. A grasp command is sent to
a real robot to complete a collision-free grasping
operation. For the human-in-the-loop scenario, an
extra conditional input from human-intervention
will be given to correct scene description when the
description from the image-to-text model is incor-
rect.

3.1 Overall of Language-based Grasping
Model

Let I denote an image as perceptive information
from the environment (i.e., cluttered scenes). Our
robot f first identifies the grasp configuration from
observation I . A typical 5-dimensional grasp con-
figuration is given by:

gi = f(I) = (x, y, θ, w, h), (1)

where (x, y) is the center position of the grasp rect-
angle, θ is the orientation angle with the x-axis,
and (w, h) is the weight and height of the grasp
rectangle. A general robotic grasping is presented
by a probability P (gi|I), where gi ∈ G and G is a
set of grasping candidates.

To achieve more stable and safe grasping, a joint
probability P (gi,Kg|I) can integrate additional
scene knowledge Kg as auxiliary information to
guide vision-based grasping. It can be decomposed
into conditionally independent two parts, given by:

P (gi ,Kg|I) = P (gi |I,Kg)P (Kg|I) , (2)



where P (Kg|I) is a scene understanding model. It
can be a scene structure parsing model (Zhu et al.,
2021; Figure. 1(b)), an image-to-text model (Fig-
ure. 1(c); Sec.3.2) with grounding model (Sec.3.3)
or direct human intervention with grounding model
(Sec.3.3). P (gi |I,Kg) is a convolutional network
and the details are described in Appendix A.2.

3.2 Grasping Scene Understanding
A state-of-the-art image-to-text model (MMT)
(Cornia et al., 2020) is used to generate the
scene description in our work, which is a stan-
dard encoder-decoder Transformer-based model
(Vaswani et al., 2017), that learns a multi-level
representation of the relationships between image
regions integrating with learned prior knowledge,
and uses a mesh-like connectivity at decoding stage
to exploit low- and high-level features. More de-
tails are in Appendix A.3.

Encoder A set of image regions I as Input is fed
into encoding layer following Eq. (3).

Z = AddNorm (Mmem (I)) ,

X̃ = AddNorm (F (Z)) ,
(3)

where AddNorm indicates the composition of
a residual connection and layer normalization.
Mmem is memory-augmented attention operation
in Eq. (4). F (Z) is a position-wise feed-forward
layer composed of two affine transformations with
a single non-linearity. X̃ = (X̃1, ..., X̃i..., X̃N ) is
the set of all encoding layers and N is the number
of layers.

Men (I) = Attention (WqI,K, V ) ,

K = [WkI,Mk] ,

V = [WvI,Mv] ,

(4)

where Attention is the self-attention operations
used in (Vaswani et al., 2017). Wq, Wk, Wv are
matrices of learnable weights. Mk and Mv are
learnable prior information.

Decoder The decoder takes an input sequence
of vector Y and output layers from encoder X̃ , and
then outputs sequence Ỹ , in Eq. 5.

Z = AddNorm
(
Mde

(
X̃
)
, Y
)
,

Ỹ = AddNorm (F (Z)) ,
(5)

where Mde is defined in Eq. 6. Y is the input
sequence of vector (groundtruth).

Mde

(
X̃, Y

)
=

N∑
i=1

αi�C
(
X̃i, Y

)
,

C
(
X̃i, Y

)
= Attention

(
WqY,WkX̃

i,WvX̃
i
)
,

αi = σ
(
Wi

[
Y,C

(
X̃i, Y

)]
+ bi

)
,

(6)

where C is cross-attention operation, σ the sigmoid
activation function, and � element product.

We make use of two adaptations during training.
The first replaces the region features in MMT3 (Cor-
nia et al., 2020) with the concatenation of region
features with bounding box features. Secondly, we
add an extra score to multiply the CIDEr-D reward
(Rennie et al., 2017) during training by maximizing
a reinforcement learning based reward, since the
description of subject object is usually the grasped
one in our task. The score is computed by the cor-
rect rate of the subject over all generated sentences
for each training batch.

3.3 Language Grounding for Grasping
We make use of visual language grounding mod-
els to map a scene description to a specified ob-
ject. For visual language grounding, let Q repre-
sent a query sentence from human or image-to-
text model and I ∈ RH×W×3 denote the image of
width W and height H . The task aims to find the
object region Kg represented by its center point
(xt, yt) and the object size (wt, ht). The overall
method can be formulated as a mapping function
(xt, yt, wt, ht) = φ(Q, I).

In this paper, considering the real-time robotic
control, we deploy our task on a one-stage language
grounding model4 (Yang et al., 2019) based on
YOLOv35 (Redmon and Farhadi, 2018) with differ-
ent language encoders for the mapping function φ.
Formally, the scene image I and scene description
Q are input to the visual encoder and text encoder,
respectively, and the grounding module outputs the
grounded object with encoders’ features following
Eq. 7.

Zvis =Mvis (I) ,

Zlang =Mlang (Q) ,

Kg = Ground ([Zvis, Zlang, Zspatial]) ,

(7)

where Mvis is Darknet-53 (Redmon and Farhadi,
2018) pre-trained on COCO object dataset (Lin
et al., 2014) and fine-tuned on our proposed
L-VMRD. Ground is the same as the out-
put layers of YOLOv3. Zspatial is spatial
feature of visual feature defined as follows:
( i
W , j

H ,
i+0.5
W , j+0.5

H , i+1
W , j+1

H , 1
W , 1

H ), which de-
notes top-left, center, bottom-right plane coordi-
nates, sizes of the each pixel in visual feature

3https://github.com/aimagelab/meshed-memory-
transformer

4https://github.com/zyang-ur/onestage_grounding
5YOLOv3 is a typical object detection model and derives

many multimodal variants.



mapping Zvis, respectively, normalized by the
width W and height H of the feature mapping.
i ∈ {0, 1, ...,W − 1} and j ∈ {0, 1, ...,H − 1}.

For Mlang of the text encoder, we choose BERT
(Kenton and Toutanova, 2019)6 and the encoder of
Transformer (Vaswani et al., 2017) (simply named
Transformer). BERT is a pre-trained language
model and builds on the Transformer network.
Each description is fed into Mlang, resulting in 768
dimensions embeddings of all the tokens as natu-
ral language representations. Transformer7 can be
regarded as randomly initialized BERT without pre-
training. Each description is embedded into 1, 024
dimensions embeddings. The model is randomly
initialized.

3.4 Training Details
We break an end-to-end grasping training pro-
cess into three submodules, (i) image-to-text (self-
explanation), (ii) language grounding, and (iii)
language-based grasping successively. The first
two models are trained based on the original project
configurations. The detail of the last one is de-
scribed in Appendix A.4.

4 Evaluation

We construct both simulation and physical experi-
ments to investigate four research questions:
Q1: How much natural language (unstructured)
scene description perform better than scene graph
(structured) knowledge in collision-free grasping
task?
Q2: How much does the pre-trained model perform
better than the randomly initialized model in our
task?
Q3: How and where does human intervention us-
ing NLP improve grasping performance under the
proposed human-in-the-loop framework?
Q4: How does our method perform on a physical
robot? Does data collection from our proposed
human-in-the-loop framework improve efficiency
during the fine-tuning process?

4.1 Settings
Scene and Platform Implementation In simula-
tion experiments, we use the test set split in Sec. 2
to evaluate our method. In the physical experiment,
we collect objects and set up the placement as sim-
ilar as possible to the training set, in which 2-6

6We use bert-base-uncased model in our work.
7https://github.com/pytorch/examples/tree/master/

word_language_model (6 encoder_layers implemented)

objects are randomly placed (stacked) on a white
table. But the reality gap is usually inevitable, espe-
cially in a robotic environment, which also tests the
robustness of our method implicitly. Other details
of the robot and training framework are described
in Appendix A.5.
Evaluation Metrics We take Benchmark Perfor-
mance and Success Rate as the main evaluation
metrics. The first is used in both simulation and
physical experiments, and the second one is only
used in the physical robot experiment:
• Benchmark Performance: In simulation exper-
iment, we evaluate model performances of the
collision-free grasp using the object retrieval top-k
recall (R@k) and top-k precision (P@k) metrics
to evaluate multi-grasp detection (Hu et al., 2016).
Chen et al. (2021b) proposes above metric to eval-
uate language-based multi-grasping. We do not
compare it with our work directly, because: (i)
their work (including dataset) is not open-sourced.
(ii) it is just a command-based end-to-end grasping
method that did not consider language scene under-
standing with human-in-the-loop. In physical robot
experiment, accuracy is the percentage of correct
cases over all test cases. The correct case is defined
in Appendix A.6.
• Success Rate: In the physical robot experiment,
we calculate the percentage of successful collision-
free grasps over all grasping trials.

4.2 Models

We compare different pipeline methods visualized
in Figure. 1. The baselines include:
End2End We re-train a state-of-the-art end-to-end
object-agnostic planar grasp detection model Multi-
Grasp (Chu et al., 2018) on L-VMRD, shown in
Figure. 1(a).
SceneGraph-Rep This is shown in Figure. 1(b) us-
ing a structured form of the scene graph generation8

(IMP) (Xu et al., 2017) encoded with relational
graph convolution network (RGCN) (Schlichtkrull
et al., 2018) shown in Figure. 3. It replaces the
subprocess from Image-to-Text Model to Language
Grounding Model in Figure. 3 to select the grouned
object. See details in Appendix A.7.1.
Our proposed models (Scene-Text Representa-
tion in Figure. 1 (c)) include:
SceneText-{BERT, Transformer} They are mod-
els using image-to-text MMT (Cornia et al., 2020)
with language grounding (Yang et al., 2019) to re-

8https://github.com/jwyang/graph-rcnn.pytorch



Method R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10
End2End 42.5 66.2 78.9 88.9 42.5 40.5 40.1 37.5
SceneGraph-Rep 72.2 85.6 90.3 92.2 73.8 70.7 69.0 64.0
SceneText-Transformer 72.2 85.6 88.3 90.3 72.4 68.8 66.2 61.6
SceneText-BERT 73.7 88.9 91.8 93.1 73.9 71.9 69.2 65.3

With Human-intervention
SceneText-Interv-Oracle 77.0 89.1 90.8 91.4 78.0 76.4 75.0 71.7
SceneText-Interv-Transformer 75.9 88.8 91.8 92.4 76.3 71.2 69.2 64.9
SceneText-Interv-BERT 76.9 90.3 93.0 94.9 76.3 75.3 73.6 69.1

Table 1: Results of self-explanation and human-intervention models in the simulation experiment. The best perfor-
mance is highlighted in bold.

Figure 4: Visualization of baseline models and our pro-
posed models in our work. S means a successful case,
while F means a failure case.

alize explainable grasping (Self-explanation w/o
Human-intervention).
SceneText-Interv-{BERT, Transformer} They
bring in human-intervention shown in Figure. 3.
In SceneText-Interv-Oracle, the retrieval region
of language grounding from the groundtruth is fed
directly into the downstream grasp model (Self-
explanation w/ Human-intervention).

4.3 Simulation Results

Scene Knowledge Table 1 gives the results of the
end-to-end, scene-graph based method, and our
method on L-VMRD data. In this setting, the input
of the model is only the image and models pre-
dict a collision-free grasping. Although End2End
(Chu et al., 2018) is the state-of-the-art method in
object-agnostic grasping, it performs poorly on the
cluttered scene grasping tasks. In contrast, by first
obtaining a scene graph and then predicting the se-
lected object, the SceneGraph-Rep model gives
much improvement, with 72.2% over End2End
R@1. This shows the necessity of scene under-
standing for the collision-free grasping task. As a

case study, in Figure. 4(a)(b), SceneText-* gener-
ate self-explanation expression and obtain correct
collision-free grasping, while End2End predicts
incorrect grasping (incorrect object selection and
low-quality grasp detection).

Scene Graph vs. Natural Language For Q1,
compared with SceneGraph-Rep model which has
R@1 of 72.2%, our method SceneText-BERT gives
a better R@1 of 73.7%. This shows the feasibility
of using natural language to replace the scene graph
for object selection. Both methods are trained un-
der the same settings, yet a natural language is
more useful for achieving expandability in real-
time human-robot interaction, thanks to its direct
connection to the natural representation of the
scene. For Q2, among our models, BERT can better
parse the generated scene descriptions than Trans-
former model in both P@k and R@k, which shows
the benefit of external pre-training. Note that Trans-
former alone does not outperform SceneGraph-Rep
in Table 1. The results show that pre-training al-
lows a textual representation of the scene to com-
pete with a standard graph representation. More
case studies can be found in Appendix A.7.2.

Human-intervention For Q3, the last two rows
in Table 1 show that the models can take human
language descriptions about the cluttered scene
as a guidance or error correction for its own tex-
tual scene representation. By comparing results
in Table 1, we can find that our proposed human-
in-the-loop framework improves the performance
from SceneText-* to SceneText-Interv-*. For exam-
ple, compared with SceneText-BERT, SceneText-
Interv-BERT improves the R@1 value from 73.7%
to 76.9%, which shows that human intervention can
be useful in practical scenarios. As a case study
shown in Figure. 4(c)(d), the image-to-text model
generates an incorrect relationship between “box”
and “mobile phone”, leading to a failed collision-
free grasping detection on the stacked box. In con-
trast, an extra human scene language description



Inter(%) 0 25 50 75 100
baseline

(L-VMRD)
MMT 44.6 45.4 49.2 51.7 55.0 12.5
LangGr 91.3 91.7 90.8 92.1 92.9 79.6

Table 2: Results of image-to-text accuracy and lan-
guage grounding accuracy @0.5 in the physical exper-
iment. Inter- for short of intervention rate, e.g., Inter-
100.

corrects the self-explanation description and helps
the model to obtain a correct collision-free grasp-
ing detection. Within the above process, 21.1%
scene language description from a robot is incor-
rect and intervened by human-correction. We also
present the results of different human-intervention
rates on F1 score, between SceneText-BERT and
SceneText-Interv-BERT. As shown in Figure. 6(a),
with the increase of human-intervention, the F1
score improves steadily. This shows that human
language intervention can compensate for the flaws
of scene understanding from the image-to-text mod-
els effectively.

4.4 Physical Robot Results

We only investigate the performance of BERT-
based models (SceneText-BERT, SceneText-Interv-
BERT) in the physical robot experiment. We re-
cruit five graduate students to participate in our
real-world experiment, who observe one whole
process of a cluttered grasping with human-like
grasping object selection each time by turns. When
the image-to-text (self-explanation) model outputs
an erroneous description, they correct the scene
description by text typing decisively. Ultimately
we collect 400 samples, including 160 correct
output samples without human-intervention (self-
explanation) and 240 human corrected (interven-
tion) samples using the model trained on L-VMRD.
Each sample contains an image, a language descrip-
tion sentence, and a grounded object bounding box.
A pipeline case containing human-intervention is
shown in Figure. 5.
Human-in-the-loop Learning Deployment In-
spired by Lu et al. (2022), we take 160 samples
as the training set to fine-tune our model based on
different intervention rates (proportion of human-
intervention samples, Inter for short). We ran-
domly sample 80 samples from the remaining
240 human-intervention samples (getting rid of
training used) as our test set. We repeat the pro-
cess three times to generate three different test
sets. The results in Table 2 show the mean val-

Figure 5: A pipeline of real robot execution with hu-
man.

ues of models test on three test sets. For Q4, Ta-
ble 2 shows the Benchmark Performance of mod-
els fine-tuned on different intervention rate train-
ing sets. The values of baseline are from the
image-to-text model (MMT) and language ground-
ing model (LangGr) trained on L-VMRD, respec-
tively, which show the necessity of domain adapta-
tion. For both MMT and LangGr, the models fine-
tuned on human-intervention data (intervention
rate 100%) achieve the best performance (55.0%
and 92.9%). For MMT, the best model improves
up to 42.5% compared to baseline (12.5%) and
10.4% compared to the model fine-tuned on self-
explanation (44.6%, intervention rate 0%). For
LangGr, the best model improves up to 13.3%
compared to baseline (79.6%) and 1.6% compared
to the model fine-tuned on self-explanation data
(91.3%). This shows that the data collected from
human-intervention can achieve better performance
in domain adaptation from simulation to physical
environment.
Evaluation on Physical Robot For a final per-
formance test, we conduct extra 80 grasping tri-
als9 for each model settings corresponding to Ta-
ble 2. Grasping performance execution by a physi-
cal robot is shown in Figure. 6(b). End2End is the
result from our baseline model trained on L-VMRD
in Figure. 1(a). MMT and MMT+LangGr are
models fine-tuning image-to-text or both image-
to-text and language grounding respectively in
SceneText-BERT setting. +human adds extra hu-
man intervention (SceneText-Interv-BERT) with
Inter-100 fine-tuning model during grasping.

As shown in Figure. 6(b), our proposed method,
which fine-tunes on human-intervention collec-
tion data, achieves 67.9% and 75.6% success
rate compared to our baseline (63.8%). For Q3
and Q4, our proposed methods achieve 71.8%(↑
3.9%) and 80.8%(↑ 5.2%) success rate with

9We keep 80 object placements for each setting consistent.



human-intervention (+human) compared to with-
out human-intervention (67.9%, 75.6%), in which
46.3% scene language description from a robot is
incorrect and intervened by human-intervention.
This shows that human language intervention
can improve the performance of grasping online
on a real robot compared to the only image-to-
text (self-explanation) method. Moreover, results
from MMT and MMT+LangGr show that using
human-intervention samples to train models can
achieve better performance when there are very
few to fine-tune the model. This indicates our pro-
posed human-in-the-loop framework is applicable
and performs well on the physical robot.

5 Related Work

Natural Language and Robotics Natural lan-
guage has been used with a variety of robot plat-
forms, ranging from manipulators to mobile robots
to aerial robots (Ahn et al., 2022; Raychaudhuri
et al., 2021; Thomason et al., 2016; Chen et al.,
2021a; Scalise et al., 2019). Most existing work is
related to language understanding and language
generation problems. For human-to-robot, lan-
guage grounding is the mainstream means to learn
the connection between percepts and actions in vi-
sual language navigation (Anderson et al., 2018;
Ku et al., 2020) and robotic grasping tasks (Can
et al., 2019; Zellers et al., 2021; Wang et al.,
2021). For robot-to-human, multi-modal natural
language generation (NLG) is widely adopted to
lessen the communication barriers between humans
and robots (Vinyals et al., 2015; Li et al., 2020;
Cornia et al., 2020; Yuan et al., 2020; Shi et al.,
2021; Zhang et al., 2021b), converting non-verbal
data to the language that human can understand
(Singh and JV, 2020). For bidirectional human-
robot, Yuan et al. (2022) propose an explainable
artificial intelligence system in which a group of
robots predicts users’ values by taking in situ feed-
back into consideration while communicating their
decision processes to users through explanations.
Our work is in line with the above work in exploit-
ing information from natural language to facilitate
decision-making. This is important because natural
language is the most intuitive means of human-
robot interaction. However, from the aspect of
language, the main difference from existing work
is that we take a step forward to not only consider-
ing language scene description as input for a robot
but also as an interface of the model for online

(a) F1 score on different intervention rates.

(b) Results of Grasping Success Rate in physical experiment.
Figure 6: Evaluation results.

self-explanation simultaneously.
Grasping in Cluttered Scene Conventional meth-
ods (Chu et al., 2018; Mahler et al., 2019; Morri-
son et al., 2020; Kumra et al., 2020) focus more
on object-agnostic grasp points detection (Figure. 1
(a)) missing parsing the object stacking scenario.
For cluttered grasping, scene understanding and hu-
man instruction are usually considered. Zhu et al.
(2021); Zhang et al. (2019a) adopt structured scene
understanding (e.g., scene graph or relationship
tree) to realize cluttered grasping detection. Mees
and Burgard (2020); Chen et al. (2021b) fuse a nat-
ural language command and an observation image
to detect a grasping in a two-stage and an end-to-
end manner, respectively. Shridhar and Hsu (2020);
Zhang et al. (2021a) receive natural command and
image input, and then grasp a specified object. Ex-
isting work exploits human language to specify an
object from the clutter, but does not allow human
intervention for error correction. While existing
method take language as external input, our scene
language description is an internal component of
the model. Moreover, we adopt the pre-train lan-
guage model instead of RNN models in existing
work.

6 Conclusion

We investigate language scene representation to
robotic grasping, which enables a robot to ex-
plain its object selection to the user and allows
the user to intervene with the selection by natural



language. Experiments show that the proposed ex-
plainable textual scene representation outperforms
both object-agnostic and scene-graph based meth-
ods. By human language intervention, the perfor-
mance can be broadly increased. Our results indi-
cate the promise of using NLP models in a robotic
system both as a representation and for human in-
tervention. To our knowledge, we are the first to
consider textual scene encoding and human correc-
tion in robotic grasping tasks, which can improve
grasping performance using natural language (vs.
w/o human-in-the-loop) and robustness (by pre-
trained language model).

7 Ethical Statement

Five graduate students who studied electronic engi-
neering are hired to cooperate with a collaborative
robot (Kinova) in our real-world experiment. Be-
cause of the subject background, they can be easy
to decide whether give human language interven-
tion based on human-like grasping behavior each
turn. The participants need to annotate the object
bounding box for each sample during the data col-
lection stage. All participants have received labor
free corresponding to their amount of trials.
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A Appendix

A.1 Details of Dataset

A.1.1 Dataset Generation

VMRD contains 4, 683 samples for 31 classes orig-
inally. Each sample has an image labeled with ob-
ject bounding boxes, object class10, and grasp
bounding boxes. Also, stacking relationships be-
tween objects in images are provided in a relation-
ship tree. Based on this, we further label various
language descriptions and a scene graph for each
sample in VMRD11 based on the spatial informa-
tion from object bounding box and relationship
tree. An auxiliary grasp-wise spatial attribute sur-
face is also introduced for better cluttered grasping
performance.

A.1.2 Dataset Usage

For the image-to-text model, (image and language
descriptions) are used. For the language ground-
ing model, (image, language descriptions, and ob-
ject bounding box) are used. For scene graph gen-
eration and graph-based object selection model,
(image, scene graph, object bounding box, grasp-
ing bounding box) are used. For grasping model
(vanilla), (image, object bounding box, grasping
bounding box, surface) are used. All of model are
setup in Sec. 4.2.

A.1.3 Scene Graph Example

For example, in Figure.2(b), the relationship tree
only shows relationships as “mobile phone-on-box”
and “box-on-notebook”, but cannot encode the re-
lationship between “mobile phone” and “notebook”
(e.g., “mobile phone-on-notebook”).

A.1.4 Surface Example

In Figure. 2(a), the “notebook” is stacked by an
“apple”, thus the surface corresponding to “apple”
grasping groundtruth is “False”. As for the tooth-
paste, it is not under any other objects, thereby la-
beled “True” for surface. In our task, this attribute
can improve grasping performance.

10The object class is used to generate language description
of the scene and construct the scene graph in our proposed
dataset.

11Note that we filter seven samples with incorrect labeling
in the original VMRD.

A.2 Details of Language-based Grasping
Model

A.2.1 Backbone Model
Our backbone model is developed on top of the two-
stage grasp detection pipeline (Chu et al., 2018) (a
grasp-version Faster RCNN (Ren et al., 2016)), fus-
ing the language knowledge as guidance. In doing
so, we propose a Knowledge-guided Grasp Pro-
posal Network (K-GPN) to replace with Region
Proposal Network (RPN) in Figure. 7, for fusing
the grounded object feature with the visual feature.
In our framework, we formulate the grasp detection
as three parts: (1) Grasp Proposals, (2) Grasp Ori-
entation Classification and Multi-grasp Detection,
and (3) Grasp Stacking Classification, described
below.

Finally, the highest-confidence angles are se-
lected for each grasp bounding box, and the grasp
bounding box (predicted from proposals) corre-
sponding to the highest confidence (mean of the
bounding box confidence and surface confidence)
is selected as gi in Eq. (1) with the selected angle.

A.2.2 Grasp Proposals
The module aims to fuse grounded object feature
and visual feature to the grasped object. The
visual feature used here is a feature map (z ∈
R50×50×1024) of the intermediate layers of ResNet-
101, and the grounded object feature (k ∈ R1×4,
also named Kg) is obtained from language ground-
ing model (in Sec.3.3) based on Self-explanation
or Human-intervention. The proposed K-GPN is
employed to fuse z and k and output a new fea-
ture vector 1× 1× 512, which is further fed into
a two-layer Multi-Layer Perceptron (MLP) to pre-
dict the probability of grasp proposal and region of
interest (ROI). Different from RPN used by (Chu
et al., 2018), which takes positive and negative pro-
posals with groundtruth over the whole image, the
proposed K-GPN samples proposals based on lan-
guage knowledge and produces ROI related to the
selected object in Algorithm 1. The ROI features
from K-GPN is fed into the following module to re-
optimize and predict the final grasp, shown in Fig-
ure. 7. The details are described in Appendix A.2.3
and A.2.4.

As shown in Algorithm 1, our method takes
in visual feature z and grounded object feature k.
And then, the grasp proposals G generated from
RPN is selected by satisfying iou constraints and
tiou constraints (language knowledge). ggt is the



Figure 7: The architecture of Language-based Grasping Model. The input of the scene image is fed into
ResNet101-C4 to extract visual features, which is one of the inputs of our proposed K-GPN. The grounded object
feature k is another input of K-GPN. K-GPN predicts grasp proposals and output proposal grasping region (also
named ROI) features, which forwards into ROI-Pooling and ResNet101-C5 to obtain 2048 dimensions feature
vectors. These feature vectors are used to predict the final grasping location, orientation, and surface. The highest
confidence grasping candidate is selected to execute by a real robot.

Algorithm 1 Knowledge-guided Grasp Proposal
Network (K-GPN)
Input: visual feature z, grounded object feature k
Model: K-GPN
Output:Grasp Proposals G
1: Global proposal set Gg = RPN(z)
2: Positive proposal set and Negative proposal set:Sp, Sn

3: while size(Sp) and size(Sn) are less than the sampling
count do

4: Sampling a grasp proposal g from Gg

5: if iou(g, ggt) > 0.5 and tiou(g, k) > 0.5 then
6: Put g into Positive proposal set Sp

7: else
8: Put g into Negative proposal set Sn

9: end if
10: end while
11: return Grasp Proposals G = {Sp, Sn}

groundtruth grasp corresponding to the proposed g.
size(·) is the number of the set. iou(·) is the con-
ventional Intersection-over-Union (IoU) function
(Ren et al., 2016). tiou(·) is a function defined in
Eq. (8), used to select knowledge-guided ROI:

tiou (g, k) =
|g
⋂
k|

|g|
, (8)

where g is the grasp proposal, and k is the grounded
object feature (visual-language grounded object
bounding box).

The proposal loss is defined in Eq. (9)

Lp

({
(pc, tc)

C
c=1

})
=
∑
c

Lcls (pc, p
∗)

+ λ1
∑
c

p∗Lloc (tc, t
∗),

(9)

where C is the set of all proposals, Lcls is the cross
entropy loss of grasp proposal classification (bi-
nary classification). Lloc is the smooth L1 regres-
sion loss of the proposal locations. (pc, tc) is the
binary class and proposal location to the i-th pro-
posal. pc is True if a grasp is specified, and False
if not. (p∗, t∗) is the groundtruth. λ1 is the weight
coefficient.

A.2.3 Grasp Orientation Classification and
Multi-grasp Detection

Our model quantizes the orientation θ into R + 1
classification problem by discretizing the contin-
uous orientation angles into R values. Another
non-grasp case is also considered in the classifica-
tion problem and in that case, the grasp proposal is
considered incorrect. We select the highest score
class as the orientation angle value. In practice, we
use equal intervals of 10◦ to discretize the angles
and R+ 1 = 19. The loss function is as follows:

Lg

({
(ρl, βl)

C
c=0

})
=
∑
c

Lcls (ρl, ρ
∗)

+ λ2
∑
c

1c6=0(c)Lloc (βc, β
∗),

(10)
where ρl denotes the probability of class l and βl
corresponds to the grasp bounding box. Lcls is the
cross entropy loss of the orientation angle classifica-
tion (19-class classification). Lloc is the smooth L1
loss of bounding boxes with the weight coefficient
λ2 when angle class c 6= 0, where c = 0 is short
for non-grasp case. (ρ∗, β∗) is the groundtruth.



Figure 8: The architecture of scene-graph based scene understanding module.

A.2.4 Surface Classification
We propose a binary classification task to predict
whether the grasped object is on the top of a stack
of objects. The loss function is as follows:

Ls

({
(pc)

C
c=1

})
=
∑
c

Lcls (sc, s
∗), (11)

where the same as Eq. (9), Lcls is the cross entropy
loss of grasp proposal surface classification (binary
classification). sc is False if the grasped object
is stacked by others, and True if not. s∗ is the
groundtruth. Detail is available in Appendix A.1.4.

The total training loss for language-based grasp-
ing detection is:

Ltotal = Lp + Lg + Ls. (12)

A.3 Image-to-text Model

MMT is shown in Figure. 9. Input is the region
features and bounding box detected from the robot
observed image. Output is a description of the spa-
tial relationships of objects in the scene. We hope
the subject object can be grasped without collision
based on the described spatial relationship.

A.4 Training Details of Language-based
Grasping Model

For the baseline model, during ROI sampling in
K-GPN, the positive and negative sampling counts
for loss calculations are both 128. The optimizer is
Adam and the learning rate is 1e−4 for 100 epochs
with batch size 8. λ1 and λ2 are both 1.0.

It is noted that for grounded object feature k, we
first use the groundtruth of the language grounding
model to train from scratch and fine-tune the model
using the outputs of the language grounding model.

A.5 Hardware and Software Implementation

The grasping execution is taken place on a single-
arm Kinova Jaco 7DOF robot under the framework
of Robot Operating System (ROS) Kinetic, shown

Figure 9: The overview of the image-to-text model ap-
plied in our self-explanation pipeline.

in Figure.3. We use an Intel RealSense SR300
RGB-D camera to obtain RGB-D images mounted
on the wrist of the robot. All the computation
is completed on a PC running Ubuntu16.04 and
Pytorch 1.7 with one Intel Core i7-8700K CPU and
one NVIDIA Geforce GTX 1080ti GPU.

A.6 Metric Details

R@k is the percentage of cases where at least one
of the top-k detection is correct. P@k is the correct
rate for all top-k predictions.

In the simulation setting, a correctly detected
grasp has a Jaccard Index greater than 0.25 and
the absolute orientation error less than 30◦ relative
to at least one of the groundtruth grasps of the
collision-free object (Kumra et al., 2020).

In the physical setting, for the grounding model,
the correct label is Intersection-over-Union (IoU)
over 0.5, and for the image-to-text model, the cor-
rect label is human-annotated.



A.7 Scene Graph based method
A.7.1 Model Structure
The model SceneGraph-Rep uses a scene-graph
based scene understanding module (shown in Fig-
ure. 8) to realize the function of red frame in Fig-
ure. 7.

The module is hierarchical including two sub-
modules: (i) Iterative Message Passing (IMP)(Xu
et al., 2017) to generate a scene graph in our
work. (ii) Relational Graph Convolution Network
(RGCN)(Schlichtkrull et al., 2018) to realize bi-
nary classification (can or cannot be grasped for
each node). The IMP and RGCN are trained on our
proposed L-VMRD same as our proposed method.

The input is region features from common ob-
ject detection model (Faster RCNN (Ren et al.,
2016)) using scene image I . IMP outputs the scene
graph Sg in the form of triple (i.e., <subject, predi-
cate, object>), which is fed into RGCN to predict
the graspability of each node (object). The high-
confidence object is selected corresponding with
the bounding box. The whole process can be for-
mulated as follows:

Z,B = Detecton (I) ,

Sg = IMP (Z) ,

(xt, yt, wt, ht) = RGCN (Sg, B) ,

(13)

where Detecton is a common object detection
model. Z and B are the set of region features and
the set of bounding boxes for each detected object,
respectively. {xt, yt, wt, ht} is the bounding box
of selected object, same as definition in Sec.3.3.

A.7.2 Case Study
In Figure. 10, we give two failure cases caused by
low-quality scene graph generation, indicating that
SceneGraph-Rep highly depends on the output
quality of the scene graph generation model. In
Figure. 10(a), failure is caused by the incorrect
scene graph generation. In Figure. 10(b), failure
is mainly caused by the error classification from
RGCN.

Figure 10: Visualization of MMT (image-to-text) and
IMP (scene graph) based self-explanation models. S
means successful case, while F means failure case.


