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Abstract

Sample-and-rank is a key decoding strategy
for modern generation-based dialogue systems.
It helps achieve diverse and high-quality re-
sponses by selecting an answer from a small
pool of generated candidates. The current state-
of-the-art ranking methods mainly use an en-
coding paradigm called Cross-Encoder, which
separately encodes each context-candidate pair
and ranks the candidates according to their
fitness scores. However, Cross-Encoder re-
peatedly encodes the same lengthy context for
each candidate, resulting in high computational
costs. Poly-Encoder addresses the above prob-
lems by reducing the interaction between con-
text and candidates, but with a price of per-
formance drop. In this work, we develop a
new paradigm called Uni-Encoder1, that keeps
the full attention over each pair as in Cross-
Encoder while only encoding the context once,
as in Poly-Encoder. Uni-Encoder encodes all
the candidates with the context in one forward
pass. We use the same positional embedding
for all candidates to ensure they are treated
equally and design a new attention mecha-
nism to avoid confusion. Our Uni-Encoder
can simulate other ranking paradigms using
different attention and response concatenation
methods. Extensive experiments show that our
proposed paradigm achieves new state-of-the-
art results on four benchmark datasets with high
computational efficiency. For instance, it im-
proves R10@1 by 2.9% with an approximately
4× faster inference speed on the Ubuntu V2
dataset.

1 Introduction

One of the major milestones of artificial intelli-
gence is the ability to converse freely in natural
language. Researchers in this field are working on
building open-domain dialogue systems capable
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1 Uni means one or unified here.

Paradigm Context-Response
Full Attention

Avoidance of
Context

Recomputation
Performance

Bi-Encoder ✗ ✓ 80.6%

Cross-Encoder ✓ ✗ 82.8%

Poly-Encoder ✗ ✓ 80.9%

Uni-Encoder (Ours) ✓ ✓ 85.9%

Table 1: Uni-Encoder maintains the full attention be-
tween context and candidates while only encoding the
lengthy context once. It is both fast and accurate com-
pared with existing paradigms. Performance is the R@1
values evaluated on the Ubuntu Dialogue Corpus V2,
and we refer to Humeau et al. (2019) for the results of
Bi-, Cross-, and Poly-Encoder. The pre-trained BERT
weights are all from Devlin et al. (2019).

of handling a variety of topics. Depending on the
implementation, these works can be categorized as
retrieval-based (Lowe et al., 2015; Tao et al., 2019;
Yuan et al., 2019) or generation-based (Vinyals
and Le, 2015; Serban et al., 2016). Retrieval-based
systems carry out conversations by selecting an op-
timal response from a large candidate pool, which
shows advantages in producing fluency and rele-
vant response. However, retrieval-based systems
may be limited by the capacity of the pre-defined
candidate pool. Generation-based systems generate
reasonable responses by a sequence-to-sequence
model. Previous work shows that generation-based
systems tend to give repetition or contradictory re-
sponses (Nie et al., 2021; Cui et al., 2022).

To combine the advantage of both methods, Adi-
wardana et al. (2020) proposed a “sample-and-rank”
method, which first samples a small pool of can-
didate responses from the generator and then re-
ranks the candidates to get the best response by
a ranker. Because a ranking model can view the
whole responses while a pure generation method
can only generate answers based on partial informa-
tion, sample-and-rank method often performs bet-
ter than the pure sample method. Under the sample-
and-rank framework, researchers have greater free-



dom to explore different ranking methods (Zhang
et al., 2020; Roller et al., 2021; Bao et al., 2021;
Thoppilan et al., 2022). They can encode candi-
dates on-the-fly and encode them with the context.
Cross-Encoder (Urbanek et al., 2019) is one such
paradigm. It jointly encodes the historical context
with every candidate using full attention and ranks
them according to the context-candidate matching
scores. Despite its superior performance, Cross-
Encoder repeatedly encodes the context for each
candidate. Since contexts are often much longer
than responses, the computation is slow for practi-
cal use. Poly-Encoder (Humeau et al., 2019; Roller
et al., 2021) mitigates the above problem by reduc-
ing the full attention at every layer of Transformer
(Vaswani et al., 2017) to global attention at the last
layer. However, later work (Gu et al., 2020, 2021;
Han et al., 2021) confirms the importance of full
attention and still uses Cross-Encoder as the base
building block for response selection.

One interesting research question is whether
there is a way to realize full attention between each
context-response pair without repeatedly encod-
ing the same long context. To answer the above
question, we proposed a new paradigm called Uni-
Encoder, as presented in Table 1. In this new
paradigm, all the candidates are concatenated with
the context and jointly input to the same encoder in
one forward pass. In the end, a softmax classifier is
used to decide which candidate needs to be selected.
If we concatenate candidates and context, we will
get two problems. First, it is challenging to learn a
good set of representations for candidates as they
have different positional embeddings. Second, the
averaging effect of the attention mechanism makes
it difficult to distinguish various candidates. To
address the above two problems, we propose two
modifications to the traditional encoder networks.

First, we use the same set of positional embed-
dings for all candidates so that they are all treated
equally because each is a possible continuation of
the given context.

Second, we also design a novel attention mecha-
nism for our new paradigm that only allows context-
candidate attention and forbids the candidates to
attend to each other directly.

Through changing these two designs, Uni-
Encoder can simulate the effects of any other
paradigm (Cross-, Bi- or Poly-Encoder) by chang-
ing how context and candidate attend to each other
and how many candidates are processed in a single

forward pass.
We evaluate our new paradigm on four bench-

mark datasets: PersonaChat (Zhang et al., 2018),
Ubuntu Dialogue Corpus V1 (Lowe et al., 2015),
Ubuntu Dialogue Corpus V2 (Lowe et al., 2017),
and Douban Conversation Corpus (Wu et al.,
2017). Empirical results show that our method
achieves state-of-the-art performance, jointly with
high computational efficiency. For instance, our
Uni-Encoder has an absolute 2.9% R@1 improve-
ment over the state-of-the-art Cross-Encoder on the
widely used Ubuntu Dialogue Corpus V2 dataset.
It also has a lower computational cost than Cross-
Encoder and is approximately four times faster at
inference time.

Our source code and model checkpoints will be
released for reproducibility and future research2.

2 Related Work

Neural approaches for open-domain dialogue
have seen significant recent progress. Due to
this progress, generation-based dialogue systems
have started outperforming retrieval-based meth-
ods (Roller et al., 2021) as they can handle a wider
variety of topics. Adiwardana et al. (2020) show
that sample-and-rank provides much more diverse
and content-rich responses than beam-search. An
additional ranking step allows responses to have
full attention/view over themselves and the con-
text, while pure generation methods only have left
attention/view. This different view is why an ad-
ditional ranking process is needed. In this study,
we particularly focus on improving this ranking
process.

Because scoring candidates given a context is
a classical problem in machine learning, numer-
ous methods (Urbanek et al., 2019; Reimers and
Gurevych, 2019; Adiwardana et al., 2020) have
been developed over the years. We will only dis-
cuss a few closely related works. Please refer to
Humeau et al. (2019) for a more detailed discus-
sion.

Bi-Encoder (Reimers and Gurevych, 2019) en-
codes the context and the candidate separately,
then scores the relatedness between their repre-
sentations. Due to its simplicity and efficiency, Bi-
Encoder often serves as a baseline method when
a new dataset introduces (Lowe et al., 2015; Di-
nan et al., 2019). One significant advantage of the
Bi-Encoder is that its response representations can

2https://github.com/dll-wu/Uni-Encoder



be pre-computed as they are context-independent.
However, in modern generation-based dialogue sys-
tems, this advantage becomes a weakness. It is not
necessary to pre-encode responses that are gen-
erated on-the-fly. And without context-response
interaction, the ranking performance is severely
weakened. Poly-Encoder (Humeau et al., 2019) im-
proves the accuracy of the Bi-Encoder by adding
a learned self-attention layer on top of the con-
text and candidate features extracted from both en-
coders. Nevertheless, Cross-Encoder is preferable
to generation-based dialogues systems in practice
due to its high effectiveness (Urbanek et al., 2019;
Humeau et al., 2019). Instead of encoding each
context and response pair separately, they encode
them jointly using a full attention mechanism.

Recent improvements in response selection are
mostly on Cross-Encoder. For example, Li et al.
(2021) adapt contrastive learning to Cross-Encoder
with a specially designed strategy and obtain a sig-
nificant performance gain. Lu et al. (2020) and Gu
et al. (2020) add speaker change information to the
inputs showing a large improvement in the response
selection task. Whang et al. (2020) and Han et al.
(2021) further post-train the encoder on domain-
specific data and see additional improvements. To
further utilize target data, Xu et al. (2021) and
Whang et al. (2021) investigate some additional
self-supervised learning tasks. These tasks served
as additional objectives jointly trained with the re-
sponse selection task. Unlike all the above im-
provements, our improvement is on the encoder
itself and can incorporate these additional tricks.

3 Methods

This section elaborates on the problem formulation
of dialogue response selection, compares different
paradigms to model this task, and describes our
implementation of Uni-Encoder.

3.1 Problem Formulation

Re-ranking methods formulate the multi-turn re-
sponse selection as a set of binary classification
tasks.

In practice, given a dialogue context C =
{u1, u2, ..., uN}, where uk, k = 1, . . . , N denotes
a single utterance from either speaker, the re-
sponse selection task is required to choose an op-
timal response from a candidate pool, denoted by
P = {r1, r2, ..., rM}. Every candidate ri is re-
spectively paired with the context C, denoted as

f(C, ri). The encoding function f yields a repre-
sentation that later undergoes non-linear transfor-
mations to predict a value of 1 for a proper match
and 0 otherwise.

However, this binary classification view is not
an efficient way of training the encoder because
we need to encode the context C once for each
pair of context-response comparisons. Instead,
Humeau et al. (2019) leveraged in-batch negative
training and viewed this task as a multi-choice
selection problem. This formulation optimizes,
e.g., softmax(f(C) · f(r1), ..., f(C) · f(rM )) by
a ground truth label that is one-hot on the index of
the sole positive candidate.

3.2 Task Modeling Paradigms
In the following, we reuse the same set of notations
in Section 3.1. Accordingly, Bi-, Poly-, Cross-, and
Uni-Encoder model the response selection task as
follows.

For Bi-Encoder, selecting the proper response
r is picking the candidate that has the highest dot
product with the context:

f(C) · f(r1), ..., f(C) · f(rM ) (1)

where the response encoding is independent of
the context encoding. Humeau et al. (2019) show
that, under the multi-choice view, the larger the M
is, the better the results are.

Poly-Encoder is a variant of Bi-Encoder. The
only difference is that it adds an additional
lightweight attention layer:

g(f(C), f(r1)), ..., g(f(C), f(rM )) (2)

where g is the light-weight attention component
over the context and response representations gen-
erated by encoder f .

Cross-Encoder has full attention between the
context and responses. However, it has difficulty in
taking the multi-choice view because it needs to re-
compute the context for each candidate, which can
result in a memory explosion. That is, for Cross-
Encoder, each context and response pair needs to
go through the network f together:

f(C, r1), ..., f(C, rM ) (3)

In this way, for a batch containing K context-
response pairs, the heavy encoder f needs to en-
code K2 times, both computationally and memory
intensive.
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EA

[CLS] [SPK1] u1 [SPK2] u2 [SEP] [CLS] r1 [SEP] ···
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Figure 1: Input embeddings of the Uni-Encoder. The positional embeddings of responses are repeated because each
candidate is a possible continuation of the given context and should be treated equally. However, this new design
will cause confusion among candidates. We address this problem by designing a new attention mechanism.

Uni-Encoder also has full attention between the
context and responses. Since all the candidate re-
sponses are concatenated and jointly encoded with
the context in one forward pass, it naturally inte-
grates the multi-choice view. Then the representa-
tion of each response is aggregated, and the most
confident candidate is selected after feeding them
into a softmax function:

softmax(f(C, r1, ..., rM )) (4)

Comparing formulas 1 to 4, we can see that Bi-
Encoder has no interaction between context and
responses in the encoding process; Poly-Encoder
allows partial interaction through a light-weight at-
tention component; both Cross- and Uni-Encoder
allow full interaction. Meanwhile, Uni-Encoder
avoids the drawback of Cross-Encoder that repeat-
edly encodes the same lengthy context. Addition-
ally, it establishes an exchange of information be-
tween candidates during the encoding process.

3.3 Inputs to the Ranking Models: Same
Positional Embedding for All Responses

We take the pre-trained BERT (Devlin et al., 2019)
as our encoder. As illustrated in Fig. 1, the inputs
to the BERT encoder consist of three components:
the token embeddings, the segment embeddings
help to distinguish between context and candidates,
and the positional embeddings. In our setting, the
positional embeddings for all the responses (E6 to
E8 in Fig.1) are repeated, treating each candidate
as a coequal because they are all possible contin-
uations of the context. We also have a separate
speaker token for each utterance in the context to
tell the model who is speaking. A [CLS] and a
[SEP] token are placed before and after each can-
didate separately.

3.4 Attention Mechanisms: An Unified
Ranking Framework

As Shown in Fig. 2, we design a new atten-
tion mechanism called Arrow Attention for Uni-
Encoder. Arrow Attention allows full attention
between context and candidates while forbidding
candidates from directly attending to each other. It
realizes parallel processing of multiple candidates
while only needing to process the context once.

Fig. 2 also shows that Uni-Encoder can sim-
ulate other popular ranking frameworks by using
different attention mechanisms. Specifically, (a)
our work is equivalent to Bi-Encoder if the Diag-
onal Attention is used instead, where the context
and the candidates do not attend to each other. (b)
The Light-Arrow Attention corresponds to Poly-
Encoder, where the context and candidates interact
only at the last encoder layer through some ad-
ditional light-weight attention. And the response
representations are only available at the global fea-
ture level, e.g., the [CLS] head or average token
embedding. (c) The Arrow attention is tailored for
Uni-Encoder, where the context and the candidates
have full attention, but the candidates do not at-
tend to each other. (d) To test the extreme, we also
have Square Attention, where all the context and
responses attend to each other. However, it brings
confusion among candidates as they share the same
set of positional embeddings. The position confu-
sion problem is addressed if it only processes one
candidate at a time, which is equivalent to Cross-
Encoder by doing so.

4 Experiments

4.1 Experimental Setup

We initialize our implementation with the BERT
(Devlin et al., 2019) checkpoint provided by the
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Figure 2: The context-response attention maps corresponding to four paradigms, where attention is only allowed in
filled areas . The Arrow attention (c) is tailored for Uni-Encoder, which realizes full attention between context
and candidates and prevents candidates from directly attending to each other. The Light-Arrow attention (b) was
introduced in Poly-Encoder (Humeau et al., 2019), where context and candidates only have attention in the last
transformer layer. Changing the attention type and candidate number in parallel computation easily converts our
work to other paradigms. For example, using the Diagonal attention (a) instead would make it a Bi-Encoder, and
*using the Square attention (d) while processing only one candidate at a time would make it a Cross-Encoder.

Huggingface package3. We also test post-training
(Whang et al., 2021; Han et al., 2021) on top of
pre-trained BERT when the checkpoints are avail-
able. The post-trained checkpoints are provided
by Han et al. (2021). As introduced in Section 2,
the post-training strategy is a common technique
to adapt the general pre-trained knowledge to the
target domain. In practice, it continues the models’
pre-training on domain-specific texts before fine-
tuning them on downstream tasks to attain better
performances. All the experiments are run on six
NVIDIA A100-SXM4-40GB GPUs with CUDA
11.1. We use the Noam scheduler and the Adam
optimizer with β1 = 0.9, β2 = 0.98, and weight
decay = 0.01. For experiments on the Ubuntu Cor-
pus V2, we use a peak lr of 2e-4. As we want each
dataset to reach the maximum batch size in training,
their learning rates are also adjusted accordingly
in Section 4.4. As for the loss function, we add
masked language modeling (MLM) loss on top of
the classification loss with the same weight coeffi-
cients. We use the average token embedding from
each candidate as the input to the softmax function.
Models are all run until they converge, measured
by a validation set.

4.2 Dataset and Evaluation Metrics

In this section, we evaluate the proposed Uni-
Encoder across four standard datasets, i.e., Per-
sonaChat (Zhang et al., 2018), Ubuntu Dialogue
Corpus V1 (Lowe et al., 2015), Ubuntu Dialogue
Corpus V2 (Lowe et al., 2017), and Douban Con-

3https://huggingface.co/models

versation Corpus (Wu et al., 2017).
PersonaChat (Zhang et al., 2018) is a crowd-
sourced dataset with two-speaker talks conditioned
on their given persona, containing short descrip-
tions of characters they will imitate in the dialogue.
Ubuntu Dialogue Corpus V1 (Lowe et al., 2015)
contains 1 million conversations about technical
support for the Ubuntu system. We use the clean
version proposed by Xu et al. (2017), which has
numbers, URLs, and system paths replaced by spe-
cial placeholders.
Ubuntu Dialogue Corpus V2 (Lowe et al., 2017)
has several updates and bug fixes compared to
V1. The major one is that the training, valida-
tion, and test sets are split into different periods.
We choose this dataset to conduct a detailed study
of Uni-Encoder as it is the only dataset that Poly-
Encoder (Humeau et al., 2019) uses and has com-
plete train/dev/test sets published.
Douban Conversation Corpus (Wu et al., 2017)
consists of web-crawled dyadic dialogs from a
Chinese social networking website called Douban.
Topics in this dataset are open-domain, and all the
conversations are longer than two turns. Unlike
other datasets where each context only has one
proper response, the test set of Douban provides
multiple proper responses.

The statistics of four benchmark datasets are
shown in Table 2. They vary greatly in volume, lan-
guage, and topic. During training, we recycle the
other labels in the same batch as negative samples
instead of using the pre-defined negative candidates
in each dataset. Several metrics are used to evalu-



Dataset Train Valid Test

PersonaChat
Turns 65,719 7,801 7,512

Positive:Negative 1:19 1:19 1:19

Ubuntu V1
Pairs 1M 0.5M 0.5M

Positive:Negative 1:1 1:9 1:9

Ubuntu V2
Pairs 1M 195.6k 189.2k

Positive:Negative 1:1 1:9 1:9

Douban
Pairs 1M 50k 6,670

Positive:Negative 1:1 1:1 1.2:8.8

Table 2: Statistics of four benchmark datasets.

ate our model following previous works. We use
Rc@k to evaluate the model performance across
four datasets. The mean reciprocal rank (MRR)
metric is additionally calculated for PersonChat
and Douban Conversation Corpus datasets. In the
Douban Conversation Corpus, we also report the
P@1 and mean average precision (MAP) values
because it contains multiple positive candidates for
a given context. It is also noted that the proportion
of the positive and negative samples of the valida-
tion set is significantly different from that of the
test set in the Douban Conversation Corpus. To al-
leviate this discrepancy, we also utilize the in-batch
negative labels in the validation stage to determine
an appropriate checkpoint for inference.

4.3 Validating Our Design Choices

In this section, we will validate our two design
choices through a set of controlled experiments.
As described in Section 3.3 and 3.4, we are able to
simulate different paradigms by replacing the atten-
tion mechanism in Uni-Encoder with some minor
modifications. We thus conduct experiments in this
unified framework to control all other variables and
make the fairest comparisons. Note that the Cross-
Encoder (iii) has to repeatedly encode the same
lengthy context with every candidate, resulting in
high memory usage and smaller batch size (5 in our
experiments). The experimental results are shown
in Table 3.

Why Repeating Position ID for Responses? Let
us first compare the results in Row (i) vs. Row (ii),
where the only difference is that Row (i) use the
same set of position IDs for all responses while
Row (ii) has unique position IDs. Uni-Encoder
with repeated position ID has significantly better
results. This observation confirms our hypothesis
that our responses should be treated equally.

Why using Full Attention Between Context and
Responses? If we compare the results of Row (i)
with Row (v) and Row (vi), where the main differ-
ences lie in how much attention we have between
context and responses, we can see that full attention
can significantly boost performance. In fact, the
more interaction (attention) they have, the better
results they can get. Specifically, Poly-Encoder in
Row(vi) has more interaction than Bi-Encoder in
Row (v), and Uni-Encoder in Row (i) has more
interaction than Poly-Encoder. These comparisons
validate our design choices for full attention be-
tween context and responses.

Why Avoiding Attention Among Responses?
Comparing results in Row (i) and Row (iii), we
can see that if we allow attention among responses,
the performance drops significantly. This is easy
to understand because if we allow attention among
responses, it will be difficult for the ranker to dis-
tinguish them.

Why Avoiding Recomputing the Context? It is
easy to understand that if we recompute the lengthy
context, the computational time increases dramati-
cally, which we will measure quantitatively in Sec-
tion 4.5. Here we show another dimension of the
consequence of recomputing the context. As shown
in Row (iv), the repetitive computation of the con-
text stops the Cross-Encoder from having a large
batch size because of the memory constraint. How-
ever, a good enough batch size, hence negative
samples, is important for a multi-choice setting, as
examined in Humeau et al. (2019). As a result, the
performance of Cross-Encoder (iv) is only on par
with Poly-Encoder (vi).

4.4 Comparison with State-of-the-Art
Methods

We compare Uni-Encoder with the existing state-
of-the-art methods in Table 4. Noted that, different
from the comparison in Table 3, the methods in
Table 4 are not entirely comparable as they have
different additional training tricks. And these tricks
often have a high impact on the performance of
these methods. The only message we want to de-
liver here is that Uni-Encoder can achieve state-
of-the-art performance even without some of these
complex training tricks.

For Ubuntu Corpus V1 and Douban Conversa-
tion Corpus, we also employ the advanced post-
training model from Han et al. (2021) and list the



Paradigm Setup Bs per GPU Ubuntu Corpus V2

R10@1 R10@2 R10@5 MRR

(i) Uni-Encoder Arrow Attn
w/ Res Concat 8 0.859 0.938 0.990 0.915

(ii) Uni-Encoder
w/o Repeated Position ID

Arrow Attn
w/ Res Concat 8 0.837 0.933 0.992 0.903

(iii) Concat-Cross-Encoder Square Attn
w/ Res Concat 8 0.826 0.916 0.980 0.892

(iv) Cross-Encoder Square Attn
w/o Res Concat 5 0.844 0.930 0.987 0.905

(v) Bi-Encoder Diagonal Attn
w/ Res Concat 8 0.835 0.925 0.987 0.899

(vi) Poly-Encoder Light-Arrow Attn (360)
w/ Res Concat 8 0.844 0.929 0.989 0.906

Table 3: Comparisons between different paradigms implemented according to the setups described in Section 3.4.
By replacing the attention mechanism in Uni-Encoder, a unified framework can simulate different paradigms, which
optimally controls all other training variables for fair comparisons. Please note the Cross-Encoder (iii) cannot reach
the same large batch size as the others as it is more memory-intensive. For Poly-Encoder, we choose the best setting
with 360 context codes.

results separately with ♣ as it significantly affects
the results and not all the methods use it.

As shown in Table 4, Uni-Encoder achieves the
best overall performance across all four bench-
marks. For example, it improves the R@1 value on
PersonaChat, Ubuntu V1, and Ubuntu V2 datasets
by 2.6%, 0.5%, and 2.9%, respectively.

However, Uni-Encoder only achieves the best
results on the Douban Corpus on four of the six
metrics. We conjecture that the positive example
size discrepancy between the training set and test
set is the reason for its poorer performance. In Uni-
Encoder, we have chosen the multi-choice setting,
assuming there is only one positive response. This
setting allows us to leverage response concatena-
tion and in-batch negative training to separate the
positive sample from negative examples. However,
multiple positive candidates in Douban Corpus at
inference time (but not in training) break this as-
sumption and may confuse the network. Our future
study will quantify the impact of this assumption.

Uni-Encoder also outperforms some of the more
complex methods that rely on expensive training
tricks, such as Liu et al. (2021) adapted BiGRU
to capture conversation-level representations, and
Su et al. (2021) leveraged hierarchical curriculum
learning in their work. These approaches typically
yield better outcomes, but at the expense of in-
creased training budgets. In contrast, Uni-Encoder
only retains the MLM loss from pre-training and
adds two extra tokens to distinguish between dif-

ferent speakers.

Figure 3: The inference time comparison for Uni-
Encoder and other paradigms on the Ubuntu V2 test set.
Please note that Poly-Encoder cannot pre-compute can-
didate embeddings in a generation-based dialogue sys-
tem, so the results differ from those reported in Humeau
et al. (2019) on retrieval tasks.

4.5 Lower Computational Cost

In addition to the accuracy gain, we also see that
Uni-Encoder is computational efficiency compared
to other paradigms. We test it on the Ubuntu V2
test set (189,200 contexts). The implementation
of Cross- and Poly-Encoder follows the method
proposed in Humeau et al. (2019).

Despite the fact that candidate pools in
generation-based dialogue systems are typically
small, we are interested in understanding the per-
formance of Uni-Encoder with enlarged pools. To
this end, we vary the pool size from 10 and 20



Models
Ubuntu Corpus V2 PersonaChat

R10@1 R10@2 R10@5 R20@1 MRR

BERT (Devlin et al., 2019) 0.781 0.890 0.980 0.707 0.808
Poly-Encoder 360 (Humeau et al., 2019) 0.809 - 0.981 - -
SA-BERT (Gu et al., 2020) 0.830 0.919 0.985 - -
BERT-CRA (Gu et al., 2021) - - - 0.843 0.903

Uni-Encoder (Ours) 0.859⋆ 0.938⋆ 0.990⋆ 0.869⋆ 0.922⋆

Ubuntu Corpus V1 Douban Conversation Corpus

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

BERT (Devlin et al., 2019) 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828
SA-BERT (Gu et al., 2020) 0.855 0.928 0.983 0.619 0.659 0.496 0.313 0.481 0.847
BERT-SL (Xu et al., 2021) 0.884 0.946 0.990 - - - - - -
BERT+FGC (Li et al., 2021) 0.829 0.910 0.980 0.614 0.653 0.495 0.312 0.495 0.850
UMSBERT (Whang et al., 2021) 0.843 0.920 0.982 0.597 0.639 0.466 0.285 0.471 0.829
MDFN (Liu et al., 2021) 0.866 0.932 0.984 0.624 0.663 0.498 0.325 0.511 0.855
SA-BERT+HCL (Su et al., 2021) 0.867 0.940 0.992 0.639 0.681 0.514 0.330 0.531 0.858
♣UMSBERT+ (Whang et al., 2021) 0.875 0.942 0.988 0.625 0.664 0.499 0.318 0.482 0.858
♣BERT-UMS+FGC (Li et al., 2021) 0.886 0.948 0.990 0.627 0.670 0.500 0.326 0.512 0.869
♣BERT-FP (Han et al., 2021) 0.911 0.962 0.994 0.644 0.680 0.512 0.324 0.542 0.870

Uni-Encoder (Ours) 0.886 0.946 0.989 0.622 0.662 0.481 0.303 0.514 0.852
♣Uni-Enc+BERT-FP (Ours) 0.916⋆ 0.965⋆ 0.994 0.648⋆ 0.688⋆ 0.518 0.327 0.557 0.865

Table 4: Evaluations on four benchmark datasets. The models marked with ♣ have been post-trained, and the others
are fine-tuned based on the naive BERT (Devlin et al., 2019). ⋆ denotes statistical significance with p-value < 0.05.

to 50 and 100 for each context by randomly se-
lecting additional candidates from the corpus. We
then conducted all speed tests on a single NVIDIA
A100-SXM4-40GB with CUDA 11.1. The batch
size for each paradigm was maximized as much as
possible. The results are presented in Figure 2. Uni-
Encoder demonstrates 4× faster inference speed
compared to Cross-Encoder when the pool size is
appropriate. As the pool size increases, the advan-
tages of Uni-Encoder become more pronounced.
Compared with Poly-Encoder, Uni-Encoder ex-
hibits a similar trend, with slightly better overall
efficiency. Furthermore, we have also deployed
Uni-Encoder in a commercial psychotherapy chat-
bot to rank the responses generated by large lan-
guage models (LLMs). It has shown to be even
more advantageous in this real-world dialogue ap-
plication, as it returns results with only one forward
pass, thus reducing the latency caused by other fac-
tors such as data transfer.

4.6 Qualitative Analysis

To further understand the performance gap between
different paradigms, we take the model checkpoints
from Section 4.3 to go through examples that these
methods predict differently. Some of the studied
cases are shown in Table 5 in Appendix. Uni-
Encoder is found to have the most specific and di-

verse selections. In contrast, even though some re-
sults of the other paradigms are not logically prob-
lematic, they sometimes prefer more generic re-
sponses. We conjecture this difference results from
the fact that Uni-Encoder compares and scores all
the responses simultaneously. Candidates can still
interact adequately with each other through their
common attention to the context. With such an
advantage, it would be easier to distinguish hard
negatives from true positives.

5 Discussion

This paper presents a new paradigm for the
generation-based dialogue response selection task.
Our proposed Uni-Encoder avoids re-computing
the lengthy context in the current state-of-the-art
Cross-Encoder method while maintaining the full
context to candidate attention. Experimental results
on four benchmark datasets show that our approach
is both fast and accurate. As Uni-Encoder holds
the potential to build a more effective and efficient
ranking paradigm, our future research will explore
its usage in broader applications, such as improv-
ing the reward model in the reinforcement learning
from human feedback (RLHF) framework (Stien-
non et al., 2020; Nakano et al., 2021; Ouyang et al.,
2022).



6 Limitations

One major limitation of Uni-Encoder is its suitabil-
ity only for generation-based dialogue systems in
which the number of responses is small. A two-
stage approach is necessary for retrieval-based sys-
tems: Context-independent encoding methods like
Poly-Encoder first filter out a small set of candi-
dates from the large pool, then Uni-Encoder can
pick out the best response from the pre-filtered
collection. Moreover, as discussed in Section 5,
Uni-Encoder could be a good component of the
RLHF approach. However, the increasing research
of pure generation methods with alignments baked-
in (Arora et al., 2022; Liu et al., 2023) may grad-
ually replace the SFT+RL method. Consequently,
Uni-Encoder will have a smaller and smaller im-
pact in terms of application. Nevertheless, because
Uni-Encoder unified all other ranking paradigms,
we believe it remains helpful even as a theoretical
framework.
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# Examples

1

A: have you looked in system settings >brightness and lock ? not power options
B: yes, of course. I’m here because the standard ways are failing on two my precise installations
⋆Uni: care to post a screenshot? Cross: I was just wondering
Bi: sry Poly: Ah, ok.

2

A: Is there a way to force apt-get to install a package even if apt is locked by another running apt?
B: you don’t want to do that wait till the updates are done then
A: It will take to long. Its a do-release-upgrade
⋆Uni/Cross: that will break things if you interupt it
Bi: Yes. I’ve done it several times Poly: ok

3

A: Does anyone know if there is a crossfeed plugin for Rhythmbox in the repositories?
B: why do want to feed rhythmbox?
A: crossfeed is a type of signal processing that removes the separation inherent in stereo recordings it’s for headphone listening
⋆Uni/Cross/Poly: it’s called crossfade ;)
Bi: could you explain more about what you want?

Table 5: Cases studied from Ubuntu V2 for comparing selections of different paradigms where ⋆ denotes the correct
choice.


