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Abstract. Full attention, which generates an attention value per ele-
ment of the input feature maps, has been successfully demonstrated to
be beneficial in visual tasks. In this work, we propose a fully atten-
tional network, termed channel recurrent attention network, for the task
of video pedestrian retrieval. The main attention unit, channel recur-
rent attention, identifies attention maps at the frame level by jointly
leveraging spatial and channel patterns via a recurrent neural network.
This channel recurrent attention is designed to build a global receptive
field by recurrently receiving and learning the spatial vectors. Then, a
set aggregation cell is employed to generate a compact video represen-
tation. Empirical experimental results demonstrate the superior perfor-
mance of the proposed deep network, outperforming current state-of-
the-art results across standard video person retrieval benchmarks, and a
thorough ablation study shows the effectiveness of the proposed units.

Keywords: Full attention · Pedestrian retrieval · Channel recurrent
attention · Global receptive field · Set aggregation

1 Introduction

This work proposes Channel Recurrent Attention Networks for the purpose of
pedestrian retrieval1, in challenging video data.

Pedestrian retrieval, or person re-identification (re-ID), a core task when
tracking people across camera networks [1], attempts to retrieve all correct
1 For the remainder of this paper, we shall use the terms “pedestrian retrieval” and

“person re-identification” interchangeably.
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matches of a person from an existing database, given a target query. There
are many challenges to this task, with a majority stemming from a poor quality
or large variation of the captured images. This often leads to difficulties in build-
ing a discriminative representation, which in turn results in a retrieval system
to mismatch its queries. Video-, as opposed to single image-, person re-ID offers
the possibility of a richer and more robust representation as temporal cues can
be utilized to obtain a compact, discriminative and robust video representation
for the re-ID task. In many practical situations, the retrieval performance suffers
from spatial misalignment [2–4], caused by the movement of body parts, which
affects the retrieval machine negatively. Focusing on this issue, many efforts have
been made to develop visual attention mechanisms [3,5–8], which makes the net-
work attend to the discriminative areas within person bounding boxes, relaxing
the constraints stemming from spatial nuances.

Attention mechanisms have been demonstrated to be successful in various
visual tasks, such as image classification [9,10], object detection [11], scene seg-
mentation [12,13] to name just a few. Generally speaking, attention mechanisms
can be grouped into channel attention [9], spatial attention [14], and full atten-
tion [5], according to the dimensions of the generated attention maps. The chan-
nel attention usually summarizes the global spatial representation of the input
feature maps, and learns a channel pattern that re-weights each slice of the
feature maps. In contrast, the spatial attention learns the spatial relationships
within the input feature maps and re-weights each spatial location of the fea-
ture maps. Lastly, full attention not only learns the channel patterns, but also
preserves spatial information in the feature maps, which significantly improves
the representation learning [15].

Various types of full attention mechanisms have been studied extensively
for the task of pedestrian retrieval [5–7]. In [5], the fully attentional block
re-calibrates the channel patterns by a non-linear transformation. Thereafter,
higher order channel patterns are exploited to attend to the channel fea-
tures [6,7]. However, the aforementioned attention fails to build long-range spa-
tial relationships due to the use of a 1 × 1 convolution. The work in [3] learns
spatial interactions via a convolutional layer with a larger kernel size (3×3), but
the attention module therein still only has a small spatial receptive field. In visual
attention, we want the network to have the capacity to view the feature maps
globally and decide what to focus on for further processing [11]. A global view
can be achieved by applying fully connected (FC) layers, which, unfortunately,
introduces a huge number of learnable parameters if implemented naively.

In this work, we propose a full attention mechanism, termed channel recur-
rent attention, to boost the video pedestrian retrieval performance. The channel
recurrent attention module aims at creating a global view of the input feature
maps. Here, the channel recurrent attention module benefits from the recurrent
operation and the FC layer in the recurrent neural network. We feed the vec-
torized spatial map to the Long Short Term Memory (LSTM) sequentially, such
that the recurrent operation of the LSTM captures channel patterns while the
FC layer in the LSTM has a global receptive field of each spatial slice. To handle
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video data, we continue to develop a set aggregation cell, which aggregates the
frame features into a discriminative clip representation. In the set aggregation
cell, we re-weight each element of the corresponding frame features, in order to
selectively emphasize useful features and suppress less informative features, with
the aid of the associated clip features. The contributions of this work include:

• The proposal of a novel channel recurrent attention module to jointly learn
spatial and channel patterns of each frame feature map, capturing the global
view of the feature maps. To the best of the authors’ knowledge, this is the
first attempt to consider the global spatial and channel information of feature
maps in a full attention design for video person re-ID.

• The development of a simple yet effective set aggregation cell, which aggre-
gates a set of frame features into a discriminative clip representation.

• State-of-the-art performance across standard video re-ID benchmarks by the
proposed network. The generalization of the attention module is also verified
by the competitive performance on the single image re-ID task.

2 Related Work

This section summarizes the related work of pedestrian retrieval and relevant
attention mechanisms.

Several approaches have been investigated to improve the state-of-the-art
retrieval performance for both single image and video person re-ID [1,16]. Focus-
ing on deep neural networks [17], metric learning and representation learning
are the two dominating approaches in modern person re-ID solutions [1]. In
[18], the similarity of input pairs is calculated by a siamese architecture [19].
The improved deep siamese network learns an image-difference metric space by
computing the cross-input relationships [20].

In representation learning, the pedestrian is represented by the concatenation
of multi-level features along the deep network [21] or by combining the person
appearance and body part features [3]. Beyond single image-based person re-ID
methods, efficient temporal modeling [22] is further required when working with
video clips. This is challenging as there is a need to create a compact video
representation for each identity. McLaughlin et al . proposed average and max
temporal pooling for aggregating frame features and each frame feature is the
output of a recurrent neural network [23].

Recent work has shown that person re-ID benefits significantly from atten-
tion mechanisms highlighting the discriminative areas inside the person bounding
boxes when learning an embedding space [3,5–7,24,25]. In [24,25], the spatial
attention mask is designed to attend one target feature map or various feature
maps along the deep network. In [5], a fully attentional block is developed to
re-calibrate the channel features. Second or higher order statistical information
is also employed in full attention frameworks [6,7]. The full attention shape map
is also generated in the harmonious attention module [3], by integrating channel
attention and spatial attention. The aforementioned attention mechanism either
fails to build spatial-wise relationships, or receives a limited spatial receptive
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field. Unlike the above methodology of full attention, we intend to develop an
attention mechanism which preserves the advantage of the common full atten-
tion, while also perceiving a global spatial receptive field of the feature maps.

3 Method

This section details the proposed deep network in a top-down fashion: start-
ing with the problem formulation of the application, followed by the network
architecture and the main attention module in the network, namely, the channel
recurrent attention module. Thereafter, we also introduce a set aggregation cell,
to encode a compact clip representation.

Notation. We use R
n, R

h×w, R
c×h×w and R

t×c×h×w to denote the n-
dimensional Euclidean space, the real matrix space (of size h × w), and the
image and video spaces, respectively. A matrix or vector transpose is denoted
by the superscript �. The symbol � and ⊕, represent the Hadamard product
(i.e., element-wise multiplication) and element-wise summation. σ : R → [0, 1]
is the sigmoid function. BN : R

n → R
n,BN(x) := γ x−E[x]√

Var[x]
+ β and ReLU :

R → R≥0,ReLU(x) := max(0, x) refer to batch normalization and rectified lin-
ear unit. φ, ϕ, � and ψ are used to represent embedding functions (e.g ., linear
transformations, or self-gating layer).

3.1 Problem Formulation

Let a fourth-order tensor, T i = [T 1
i , T 2

i , . . . , TN
i ] ∈ R

N×C×H×W , denote the
i-th video sequence of a pedestrian, where N , C, H, and W are the number
of frames, channels, height and width, respectively. Each video sequence T i is
labeled by its identity, denoted by yi ∈ {1, . . . , k}. The training set with M
video sequences is described by T = {T i, yi}M

i=1. The video person re-ID model,
fθ : T → F , describes a non-linear embedding from the video space, T , to an
embedding space, F , in which the intra-class/person distance is minimized and
the inter-class/person distance is maximized. The target of training a deep neural
network is to learn a set of parameters, θ�, with minimum loss value (e.g ., L),
satisfying: θ� = arg minθ

∑M
i=1 L(fθ(T i), yi). In the training stage, we randomly

sample batches of video clips, where each video clip has only t frames (randomly
chosen). Such frames are order-less and hence, we are interested in set-matching
for video re-ID.

3.2 Overview

We begin by providing a sketch of our design first. In video person re-ID, one
would ideally like to make use of a deep network to extract the features of the
frames and fuse them into a compact and discriminative clip-level representation.
In the lower layers of our design, we have five convolutional blocks along with
channel recurrent attention modules at positions P1, P2 and P3 (see Fig. 1). Once
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the deep network extracts a set of frame features (i.e., [f1, . . . ,f t] in Fig. 1), a set
aggregation cell is utilised to fuse frame features into a compact clip-level feature
representation (i.e., g). The final clip representation is F = ReLU

(
BN(W�

1 g)
)
,

followed by another FC layer to perform identity prediction (i.e., p = W�
2 F ),

where W 1,W 2 are the learnable parameters in the FC layers. We note that
the output of the middle convolutional layers captures rich spatial and channel
information [6,11], such that the attention modules can make better use of this
available information.

The network training benefits from multi-task learning, which formulates
the network training as several sub-tasks. Our work follows [22], and trains the
network using a triplet loss and a cross-entropy loss. The details of the loss
functions are described in the supplementary material.

Fig. 1. The proposed deep neural network with channel recurrent attention modules
and a set aggregation cell.

3.3 Channel Recurrent Attention

We propose the channel recurrent attention module (see Fig. 2), which learns
the spatial and channel patterns globally in a collaborative manner with the
assistance of an LSTM, over the feature maps of each frame. To be specific, we
model the input feature maps as a sequence of spatial feature vectors, and feed
it to an LSTM to capture global channel patterns by its recurrent operation. In
our design, the hidden layer (e.g ., FC) of the LSTM unit, can be understood
as having a global receptive field, acting on each spatial vector while sharing
weights with other spatial vectors, addressing the limitation of a small receptive
field in CNNs. In Sect. 4, our claim is empirically evaluated in an ablation study.

Fig. 2. The architecture of the proposed channel recurrent attention module.
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Let x ∈ R
c×h×w be the input of the channel recurrent attention module.

In our implementation, we project x to φ(x), reducing the channel dimension
by a ratio of 1/d, and reshape the embedded tensor φ(x) to a matrix x̂ =
[x̂1, . . . , x̂ c

d
]� ∈ R

c
d×hw, where a row of x̂ (e.g ., x̂i ∈ R

hw, i = 1, . . . , c
d ) denotes

the spatial vector of a slice. The effect of the ratio 1/d is studied in Sect. 4.2. A
sequence of spatial vectors is then fed to an LSTM unit and the LSTM generates
a sequence of hidden states, in matrix form:

ĥ = LSTM(x̂) = [ĥ1, . . . , ĥ c
d
]�, (1)

where ĥi ∈ R
hw, i = 1, . . . , c/d is a sequence of hidden states and LSTM(·)

represents the recurrent operation in an LSTM. The insight is illustrated by the
unrolled LSTM, shown in Fig. 5(a). ĥ is further reshaped to the same size as
the input tensor φ(x) (i.e., h = Reshape(ĥ),h ∈ R

c
d×h×w). The final attention

value is obtained by normalizing the embedded h, written as:

mcr = σ(ϕ(h)). (2)

Here, ϕ(h),mcr ∈ R
c×h×w. This normalized tensor acts as a full attention map

and re-weighs the elements of the associated frame feature map (see Fig. 2), by
element-wise multiplication:

z = mcr � x. (3)

Remark 1. There are several studies that use LSTMs to aggregate features [26,
27] (see Fig. 3(a) and 3(b)), or generate attention masks [24,28] (see Fig. 3(c)).
Our channel recurrent attention module (see Fig. 3(d)) is significantly different
from existing works as shown in Fig. 3. The designs in [26] and [27] employ an
LSTM to aggregate features either from input feature maps [26], or a sequence
of frame features in a video [27]. In [24,28], an attention value for each spatial
position of the feature maps (i.e., spatial attention) is constructed recursively,
while ignoring the relation in the channel dimension. In contrast, our channel
recurrent attention generates an attention value per element of the feature maps
(i.e., full attention), thereby enabling the ability to learn richer spatial and
channel features.

(a) Feature ag-
gregation [26]

(b) Feature ag-
gregation [27]

(c) Attention mask
generation [24,28]

(d) Attention maps
generation (Ours)

Fig. 3. Schematic comparison of our attention mechanism and existing LSTM-based
works. In (c), the notation ∗ denotes a weighted sum operation.
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3.4 Set Aggregation

To encode a compact clip representation, we further develop a set aggregation
cell to fuse the per frame features (see Fig. 4 for a block diagram). The set
aggregation cell highlights the frame feature, with the aid of the clip feature,
firstly, and then aggregates them by average pooling.

Fig. 4. The architecture of the proposed set aggregation cell.

Let [f1, . . . ,f t],f j ∈ R
c be a set of frame feature vectors, encoded by a deep

network (see Fig. 1). The set aggregation cell first re-weights the frame features.
In our implementation, we combine average pooling and max pooling to aggre-
gate frame features. This is due to the fact that both pooling schemes encode
different statistical information and their combination is expected to increase
the representation capacity. More specifically, each element in favg and fmax are
defined as favg

i = avg(f1
i , . . . , f t

i ) = 1
t

∑t
j=1(f

j
i ) and fmax

i = max(f1
i , . . . , f t

i ),
respectively. Each aggregation is followed by self-gating layers (i.e., � and ψ in
Fig. 4) to generate per-element modulation weights, and fused by element-wise
summation as:

f̂ = �(favg) ⊕ ψ(fmax). (4)

This is then followed by normalizing the fused weights to produce the final
mask (e.g ., ms = σ(f̂)) which is applied as follows:

gj = ms � f j , j = 1, . . . , t. (5)

Finally, we use average pooling to obtain the clip feature, g = 1/t
∑t

j=1 g
j . We

note that in our network the parameters in the two self-gating layers are not
shared. This is to increase the diversity of features which is beneficial, and we
evaluate it in Sect. 4.

Remark 2. The set aggregation cell is inspired by the Squeeze-and-Excitation
(SE) block [9], in the sense that frame features will be emphasized under the
context of the global clip-level features, but with a number of simple yet impor-
tant differences: (i) The SE receives a feature map as input, while the input of
our set aggregation is a set of frame features. (ii) The SE only uses global average
pooling to encode the global feature of the feature maps, while the set aggre-
gation employs both average and max pooling to encode hybrid clip features,
exploiting more diverse information present in the frame features.
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3.5 Implementation Details

Network Architecture and Training. We implemented our approach in the
PyTorch [29] deep learning framework. We chose ResNet-50 [30] as the back-
bone network, pre-trained on ImageNet [31]. In a video clip with t frames, each
frame-level feature map, produced by the last convolutional layer, is squeezed
to a feature vector f j ∈ R

2048, j = 1, . . . , t by global average pooling (GAP).
Subsequently, the set aggregation cell fuses the frame features to a compact
clip feature vector g. Following g, the final clip-level person representation F is
embedded by a fully connected (FC) layer with the dimension 1024. Thereafter,
another FC layer is added for the purpose of final classification during training.
In the channel recurrent attention module, the ratio d is set to 16 for the PRID-
2011 and iLIDS-VID datasets, and 8 for the MARS and DukeMTMC-VideoReID
datasets, and the LSTM unit has one hidden layer. In the set aggregation cell,
the self-gating layer is a bottleneck network to reduce the number of param-
eters, the dimension of the hidden vector is 2048/r, and we choose r = 16 as
in [9], across all datasets. The ReLU and batch normalization are applied to each
embedding layer and self-gating layer. The details of the datasets is described in
Sect. 4.1.

We use the Adam [32] optimizer with default momentum. The initial learning
rate is set to 3 × 10−4 for PRID-2011 and iLIDS0-VID, and 4 × 10−4 for MARS
and DukeMTMC-VideoReID. The mini-batch size is set to 16 for the PRID-2011
and iLIDS-VID datasets and 32 for the MARS and DukeMTMC-VideoReID
datasets, respectively. In a mini-batch, both P and K are set to 4 for the PRID-
2011 and iLIDS-VID, whereas P = 8, K = 4 for the MARS and DukeMTMC-
VideoReID. The margin in the triplet loss, i.e., ξ, is set to 0.3 for all datasets.
The spatial size of the input frame is fixed to 256 × 128. Following [22], t is
chosen as 4 in all experiments and 4 frames are randomly sampled in each video
clip [22,33]. Our training images are randomly flipped in the horizontal direction,
followed by random erasing (RE) [34]. We train the network for 800 epochs. The
learning rate decay is set to 0.1, applied at the 200-th, 400-th epoch for the
PRID-2011 and iLIDS-VID, and the 100-th, 200-th, 500-th epoch for the MARS
and DukeMTMC-VideoReID, respectively. Moreover, it is worth noting that we
do not apply re-ranking to boost the ranking result in the testing phase.

4 Experiment on Video Pedestrian Retrieval

4.1 Datasets and Evaluation Protocol

In this section, we perform experiments on four standard video benchmark
datasets, i.e., PRID-2011 [35], iLIDS-VID [36], MARS [37] and DukeMTMC-
VideoReID [38] to verify the effectiveness of the proposed attentional network.
PRID-2011 has 400 video sequences, showing 200 different people where each
person has 2 video sequences, captured by two separate cameras. The person
bounding box is manually labeled. iLIDS-VID contains 600 image sequences of
300 pedestrians, captured by two non-overlapping cameras in an airport. Each
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of the training and test sets has 150 person identities. In this dataset, the tar-
get person is heavily occluded by other pedestrians or objects (e.g ., baggage).
MARS is one of the largest video person re-ID datasets which contains 1, 261
different identities and 20, 715 video sequences captured by 6 separate cameras.
The video sequences are generated by the GMMCP tracker [39], and for each
frame, the bounding box is detected by DPM [40]. The dataset is split into
training and testing sets that contain 631 and 630 person identities, respec-
tively. DukeMTMC-VideoReID is another large video person re-ID dataset.
This dataset contains 702 pedestrians for training, 702 pedestrians for testing as
well as 408 pedestrians as distractors. The training set and testing set has 2, 196
video sequences and 2, 636 video sequences, respectively. The person bounding
boxes are annotated manually.

Following existing works, we use both the cumulative matching characteristic
(CMC) curve and mean average precision (mAP) to evaluate the performance
of the trained re-ID system.

4.2 Ablation Study

This section demonstrates the effectiveness of the proposed blocks and the selec-
tion of appropriate hyper parameters via a thorough battery of experiments.

Effect of Channel Recurrent Attention. Here, we evaluate the effective-
ness of the proposed channel recurrent attention, and verify our claim that our
channel recurrent attention is able to capture more structure information as we
sequentially feed the spatial vector to the LSTM. To show the design is reason-
able, we compare our channel recurrent attention with two variations, namely,
the spatial recurrent attention and the conv attention.

In the spatial recurrent attention, the LSTM receives a sequence of chan-
nel features from feature maps as input, with the recurrent operator along the
spatial domain. In more detail, in channel recurrent attention (see Fig. 2), the
input is a sequence of spatial vectors, (e.g ., x̂ = [x̂1, . . . , x̂ c

d
]� ∈ R

c
d×hw). In

the spatial recurrent attention, the input is a sequence of channel vectors, (e.g .,
x̂ = [x̂1, . . . , x̂hw]� ∈ R

hw× c
d ). Though the recurrent operation along the spatial

domain is also able to learn the pattern spatially, the spatial recurrent attention
lacks explicit modeling in the spatial domain. Figure 5 shows the schematic dif-
ference between channel recurrent attention (see Fig. 5(a)) and spatial recurrent
attention (see Fig. 5(b)).

In addition, to verify the necessity of a global receptive field in our channel
recurrent attention, we further replace the LSTM with a convolutional layer with
a similar parameter size, which is called a conv attention. The architecture of the
conv attention is shown in Fig. 6. In the Conv block, the kernel size is 3 × 3 and
the sliding step is 1, and it produces a tensor with the shape of c

d × h × w. The

generated attention mask can be formulated as mconv = σ
(
ϕ
(
Conv(φ(x))

))
,

where Conv(·) indicates the convolutional operation.
Table 1 compares the effectiveness of three attention variations. It is shown

that our channel recurrent attention has a superior performance over the other
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(a) Channel recurrent attention. (b) Spatial recurrent attention.

Fig. 5. Schematic comparison between channel recurrent attention and spatial recur-
rent attention.

Fig. 6. The architecture of the proposed conv attention module.

Table 1. Comparison of three attention variations across four datasets. CRA: Channel
Recurrent Attention; SRA: Spatial Recurrent Attention; CA: Conv Attention.

PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

Method R-1 mAP R-1 mAP R-1 mAP R-1 mAP

(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2

(ii) + CRA 92.1 94.6 87.0 90.6 86.8 81.6 94.7 94.1

(iii) + SRA 87.9 92.1 83.3 87.4 84.6 78.4 89.4 87.8

(iv) + CA 89.6 92.8 84.2 88.2 85.2 79.7 91.2 90.1

two variations. As can be observed, the channel recurrent attention cell improves
the accuracy significantly across all four datasets. This observation supports our
assumption that the attention receives a performance gain from explicit modeling
of the global receptive field in each slice of the feature maps.

Effect of the Position of Channel Recurrent Attention. The position of
the channel recurrent attention block affects the information in the spatial or the
channel dimensions. We want to explore the rich spatial and channel information;
thus, we only consider the feature maps from the middle of the deep network
as input to channel recurrent attention (i.e., P1, P2, and P3 in Fig. 1). The
comparison is illustrated in Table 2. It shows that the system receives a better
gain when adding the channel recurrent attention module at position P2, which
aligns with our motivation that more spatial information is utilized in the feature
maps. The works [6,11] also present a similar observation. When applying the
attention in P1, P2 and P3, the network performs at its best.

Effect of Reduction Ratio 1/d in Channel Recurrent Attention. The
ratio 1/d in the embedding function φ(·) (see Fig. 2) is to reduce the channel
dimensionality of the input feature maps, consequently, reducing the sequence
length input to the LSTM; thus, it is an important hyper-parameter in the chan-
nel recurrent attention. Table 3 reveals that the best performance is obtained
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Table 2. Effect of the position of channel recurrent attention across four datasets.
CRA: Channel Recurrent Attention.

PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

Position R-1 mAP R-1 mAP R-1 mAP R-1 mAP

(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2

(ii) + CRA in P1 89.6 92.2 85.3 88.2 85.0 80.6 92.7 92.2

(iii) + CRA in P2 91.0 94.4 86.7 90.2 86.4 81.2 94.2 93.4

(iv) + CRA in P3 90.3 92.6 86.0 88.4 86.1 80.8 93.5 92.7

(v) + CRA in P1&P2&P3 92.1 94.6 87.0 90.6 86.8 81.6 94.7 94.1

when d = 16 for small-scale datasets and d = 8 for large-scale datasets. This
could be due to the fact that training a network with a large amount of training
samples is less prone to overfitting. Furthermore, this table also shows the fact
that the LSTM has difficulties in modeling very long sequences (e.g . smaller d in
Table 3). However, when the sequences are too short (e.g ., d = 32), the channel
features are compressed, such that some pattern information is lost.

Table 3. Effect of reduction ratio 1/d in channel recurrent attention across four
datasets.

PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

Reduction Ratio R-1 mAP R-1 mAP R-1 mAP R-1 mAP

(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2

(ii) d = 2 88.7 92.1 84.0 88.7 84.8 80.2 93.4 92.8

(iii) d = 4 89.8 92.6 85.6 89.1 85.2 80.3 93.9 93.4

(iv) d = 8 91.0 93.2 86.3 89.4 86.8 81.6 94.7 94.1

(v) d = 16 92.1 94.6 87.0 90.6 85.5 80.7 94.3 94.3

(vi) d = 32 91.0 93.8 82.7 88.9 84.3 79.8 93.2 93.4

Why using LSTM in the Channel Recurrent Attention? In our channel
recurrent attention, we use the LSTM to perform the recurrent operation for the
spatial vector. We observed that once the order of the spatial vectors is fixed,
the recurrent operation in the LSTM is able to learn useful information along
the channel dimension. We further investigated using Bi-LSTM to replace the
LSTM in the attention and evaluate its performance. Compared with LSTM, the
Bi-LSTM only brings a marginal/no performance gain across different datasets,
whereas it almost doubles the number of parameters and FLOPs in the attention
model. Please refer to Sect. 1 of the supplementary material for details of those
experiments. These empirical experimental results support the use of a regular
LSTM in our attention module.

Effect of Set Aggregation. Table 4 shows the effectiveness of set aggregation
and the effectiveness of different pooling schemes in the set aggregation block.
It is clear that the individual set aggregation improves the network performance
and the combination of attention modules continues to increase the performance
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gain; showing that two attention modules mine complementary information in
the network. Furthermore, all pooling schemes improve the results of the net-
work, showing that the network receives gains from set aggregation. The com-
bination of the average pooling and the max pooling scheme with non-sharing
weights further shows its superiority over the individual average or max pooling
schemes. This observation can be interpreted as the average and max pooled fea-
tures have complementary information when encoding clip-level representations.

Table 4. Effect of set aggregation across four datasets. CRA: Channel Recurrent Atten-
tion, SA: Set Aggregation, †: Sharing weights, ‡: Non-sharing weights.

PRID-2011 iLIDS-VID MARS DukeMTMC-VideoReID

Method R-1 mAP R-1 mAP R-1 mAP R-1 mAP

(i) No Attention 85.4 91.0 80.0 87.1 82.3 76.2 87.5 86.2

(ii) + CRA 92.1 94.6 87.0 90.6 86.8 81.6 94.7 94.1

(iii) + SA (Average & Max Pooling) 87.6 92.3 84.7 89.1 85.2 80.5 91.2 88.9

(iv) + CRA & SA (Avg Pooling) 94.4 95.2 87.9 91.2 87.2 82.2 95.6 95.0

(v) + CRA & SA (Max Pooling) 93.3 94.8 87.3 90.8 86.9 81.2 95.2 94.6

(vi) + CRA & SA† (Avg & Max Pooling) 95.5 96.1 88.2 92.4 87.7 82.6 95.9 95.3

(vii) + CRA & SA‡ (Avg & Max Pooling) 96.6 96.9 88.7 93.0 87.9 83.0 96.3 95.5

4.3 Comparison to the State-of-the-Art Methods

To evaluate the superiority of our deep attentional network, we continue to com-
pare our results with the current state-of-the-art approaches, shown in Table 5
and Table 6.

PRID-2011. On the PRID-2011 dataset, our network improves the state-of-
the-art accuracy by 1.1% in R-1, compared to GLTR [51]. As for the mAP, our
approach outperforms [43] by 2.4%. When compared to SCAN [46], which uses
optical flow, our approach outperforms it by 1.3% in R-1.

iLIDS-VID. On the iLIDS-VID dataset, our approach improves the state-of-
the-art mAP value by 5.2%, compared to [43]. As for the R-1 accuracy, our
approach also achieves a new state-of-the-art, outperforming [33] by a comfort-
able 2.4%. In addition, our approach continues to outperform SCAN + optical
flow [46] by 0.7% in R-1.

MARS. On the MARS dataset, our approach achieves state-of-the-art perfor-
mances on mAP and competitive performance on the CMC curve. In particular,
our approach outperforms VRSTC [50] on mAP, R-5 and R-10. It is worth
mentioning that VRSTC uses a generator for data augmentation. Furthermore,
when compared to other methods, we observe that our approach outperforms
GLTR [51] by 1.3%/4.6% in R-1/mAP.
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Table 6. Comparison with the SOTA methods on DukeMTMC-VideoReID dataset.

Method Publication DukeMTMC-VideoReID

R-1 R-5 R-10 R-20 mAP

ETAP-Net [38] CVPR’18 83.6 94.6 - 97.6 78.3

STAR+Optical flow [48] BMVC’19 94.0 99.0 99.3 99.7 93.4

VRSTC [50] CVPR’19 95.0 99.1 99.4 - 93.5

STA [49] AAAI’19 96.2 99.3 - 99.7 94.9

GLTR [51] ICCV’19 96.3 99.3 - 99.7 93.7

Baseline - 87.5 96.5 97.2 98.3 86.2

Ours - 96.3 99.4 99.7 99.9 95.5

DukeMTMC-VideoReID. As for this new dataset, our network continues
to show its superior performance (see Table 6). Our approach is superior to
GLTR by 1.8% on mAP, and outperform the state-of-the-art mAP value of STA
by 0.6%, and our network also achieves competitive performance on the CMC
metric, outperforming the state-of the-art on R-5, R-10 and R-20.

We visualize the feature maps from the baseline network and our channel
recurrent attention network, trained on the MARS dataset. The feature maps
are obtained in P2 (see Fig. 1). In Fig. 7, we observed that compared to the
baseline network, our attention network highlights more areas of human bodies,
which verifies the effectiveness of our network qualitatively. Please refer to the
supplementary material for further visualizations.

Fig. 7. Visualization of feature maps. We sample three video clips from different pedes-
trians and visualize the feature maps.

5 Experiments on Single Image Pedestrian Retrieval

To show the generalisation of the proposed channel recurrent attention, we
employ it in a single image pedestrian retrieval task. We select a strong baseline
network from [6], and insert the channel recurrent attention after each convolu-
tional block. The deep network is fine-tuned from ImageNet pre-training [31] and
trained with the same hyper-parameter setting as in [6]. We use CUHK01 [52]
and DukeMTMC-reID [53] to evaluate the performance of the network. Please
refer to the supplementary material for the details of the datasets. We use mAP
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and the CMC curve to evaluate the performance. Table 7 and Table 8 illus-
trate that our approach achieves competitive results to existing state-of-the-art
approaches, showing the effectiveness and generalization of our channel recurrent
attention module.

Table 7. Comparison with the SOTA
on CUHK01 dataset.

Method Publication CUHK01

R-1 R-5 R-10 R-20

Zhao et al . [54] ICCV’17 75.0 93.5 95.7 97.7

Spindle Net [55] CVPR’17 79.9 94.4 97.1 98.6

PBR [2] ECCV’18 80.7 94.4 97.3 98.6

Baseline - 79.3 92.7 95.8 98.2

Ours - 83.3 96.3 98.4 98.9

Table 8. Comparison with the SOTA on
DukeMTMC-reID dataset.

Method Publication DukeMTMC-reID

R-1 R-5 R-10 mAP

OS-Net [56] ICCV’19 88.6 - - 73.5

BAT-net [6] ICCV’19 87.7 94.7 96.3 77.3

ABD-Net [57] ICCV’19 89.0 - - 78.6

Baseline - 85.4 93.8 95.5 75.0

Ours - 89.2 95.6 96.9 78.3

6 Conclusion

This work proposes a novel deep attentional network for task of video pedestrian
retrieval. This network benefits from the developed channel recurrent attention
and set aggregation modules. The channel recurrent attention module is employed
for a global view to feature maps, to learn the channel and spatial pattern jointly,
given a frame feature maps as input. Then the set aggregation cell continues to
re-weight each frame feature and fuses them to get a compact clip representation.
Thorough evaluation shows that the proposed deep network achieves state-of-the-
art results across four standard video-based person re-ID datasets, and the effec-
tiveness of each attention is further evaluated by extensive ablation studies.
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