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Abstract

Scene text image super-resolution (STISR) aims to simulta-
neously increase the resolution and legibility of the text im-
ages, and the resulting images will significantly affect the per-
formance of downstream tasks. Although numerous progress
has been made, existing approaches raise two crucial issues:
(1) They neglect the global structure of the text, which bounds
the semantic determinism of the scene text. (2) The priors,
e.g., text prior or stroke prior, employed in existing works, are
extracted from pre-trained text recognizers. That said, such
priors suffer from the domain gap including low resolution
and blurriness caused by poor imaging conditions, leading to
incorrect guidance. Our work addresses these gaps and pro-
poses a plug-and-play module dubbed Dual Prior Modulation
Network (DPMN), which leverages dual image-level priors
to bring performance gain over existing approaches. Specifi-
cally, two types of prior-guided refinement modules, each us-
ing the text mask or graphic recognition result of the low-
quality SR image from the preceding layer, are designed to
improve the structural clarity and semantic accuracy of the
text, respectively. The following attention mechanism hence
modulates two quality-enhanced images to attain a superior
SR result. Extensive experiments validate that our method
improves the image quality and boosts the performance of
downstream tasks over five typical approaches on the bench-
mark. Substantial visualizations and ablation studies demon-
strate the advantages of the proposed DPMN. Code is avail-
able at: https://github.com/jdfxzzy/DPMN.

Introduction
Scene text images, containing rich linguistic and graphic in-
formation, are widely present in our daily life. The under-
standing of scene text images is an integral part of vari-
ous high-level applications, like scene text recognition (Fang
et al. 2021), scene text retrieval (Wang et al. 2021a), and
text-based image captioning (Zhang et al. 2022). However,
limited zone in the image and inadequate imaging condi-
tions (Long, He, and Yao 2021) cause an issue of low res-
olution (LR) for texts. This, in turn, leads to unreliable text
understanding in such images, thereby degrading the perfor-
mance of downstream tasks. In this context, it is necessary
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Figure 1: The illustration of effect about global structure and
graphic semantic priors on the scene text image. “R”, “P”
and “S” represent recognition results, PSNR, and SSIM.

to develop a super-resolution (SR) method, to recover LR
scene text images to high-quality SR ones.

To achieve this goal, some early attempts (Xu et al. 2017;
Pandey et al. 2018) simply utilize techniques of conven-
tional SR methods, e.g., L1 loss, to improve the quality of
scene text in images. However, they cannot effectively boost
the performance of downstream tasks. Subsequently, some
methods, tailored for the scene text image super-resolution
(STISR) task, benefit from the superficial properties of the
scene text. For example, the pioneering work, Text Super-
Resolution Network (TSRN), tends to perceive the sequen-
tial information of the text via CNN-BiLSTM layers (Wang
et al. 2020). The most recent works attempt to leverage vari-
ous text properties from LR images, as prior, to steer the SR
process. Text Gestalt (TG) model (Chen et al. 2022) uses
the local stroke structure to capture the stroke-aware prior
from a Transformer-based recognizer to prompt the train-
ing phase. Text Prior Guided Super-Resolution (TPGSR)
model (Ma, Guo, and Zhang 2021) and the following Text
ATTention network (TATT) (Ma, Liang, and Zhang 2022)
leverage the pre-trained text recognizer to obtain a text prior,
i.e., the probability sequence of a scene text image whose
length denotes the number of characters learned by the text
recognizer. This hence improves the quality of SR images as
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Figure 2: The illustration of global structure and graphic se-
mantic priors in an existing STISR approach.

well as the performance of downstream tasks.
Despite the significant advances that have been made, ex-

isting methods ignore two essential facts, limiting their fur-
ther improvement. First, the global structure information
of scene text plays a vital role in STISR. In terms of the
scene text, global structure contains character strokes and
the orientation of the text sequence (see HR images in Fig-
ure 1(b)). Unlike natural objects, scene text in the image is
the spatial cluster of discrete characters, where each item is a
continuous graphic (Ye and Doermann 2014). Moreover, the
semantic definiteness of the text is determined by the global
structure containing characteristics at multi scales (Yao et al.
2014). That said, natural objects like animals can be rec-
ognized by local structure and texture, even omitting most
of the global structure information, e.g., shape and profile.
However, missing such a global structure brings uncertainty
to the scene text (see Figure 1(a)) (Wu et al. 2019). As a di-
rect representation of the global structure, the text mask has
been ignored or solely used as the fourth channel of the in-
put for enhancement by existing methods (Wang et al. 2020;
Ma, Liang, and Zhang 2022). Second, the recognizer-based
priors have inherent shortcomings. Concretely, current
prior-guided methods merely employ a pre-trained text rec-
ognizer to extract the text prior, such that the domain gap of
resolution will result in incorrect prior information. Mean-
while, we empirically observe that such methods are prone
to generate artifacts. As shown in Figure 1(b), TATT and
TPGSR produce amiss images, and characters are falsely
predicted by the recognizer, which again shows the neces-
sity of the structure prior to the scene text image.

To address the issues above, we utilize two explicit image-
level priors, i.e., text mask and graphical recognition result
from low-quality images. These two priors provide comple-
mentary information. Specifically, the text mask brings su-
periority in terms of the global structure, while the graphi-
cal recognition result contributes to clear semantic features.
That is, the former compensates for the deficiency of char-
acter correctness and attributes w.r.t the graphical property,
while the latter compensates for the ambiguity of the mask
in terms of local essential information. This induction is
shown in Figure 2. Having those two priors in mind, we pro-
pose Dual Prior Modulation Network (DPMN), a plug-and-
play module that enjoys the global structural information
and the local semantic information to improve the quality
of the SR images produced by existing models. In doing so,
two branches of Prior-Guided Refinement Modules (PGRM)
are designed to create the text mask prior and the graphi-
cal recognition prior, and each processes SR images guided

by the global structural information and the local seman-
tic information, respectively. A following Complementation
Modulation Module (CMM) is further proposed to modu-
late and fuse the reconstructed SR images, refined by two
PGRM branches. Of note, our work can be understood as a
post-processor of STISR networks, such that it can be seam-
lessly used in existing established works. Our contributions
are summarized as follows:

• We propose a novel Dual Prior Modulation Network
(DPMN), which leverages the text mask and the graphi-
cal recognition result as priors, to improve the quality of
SR images. By doing so, DPMN benefits from the global
structure and semantic information, attaining a superior
SR result.

• In DPMN, each PGRM generates a prior and produces
the improved SR image via interacting the scene text im-
age and the prior image. Then enhanced SR images are
modulated and fused by a CMM.

• Extensive experiments demonstrate that the proposed
DPMN can boost image quality and the performance of
the text recognition task on the TextZoom benchmark on
top of existing methods. Additional analysis exhibits the
generalizability of DPMN.

Related Work
Single Image Super-Resolution
Single image super-resolution (SISR) aims to recover HR
images from LR ones (Wang, Chen, and Hoi 2020). The pi-
oneering work, called SRCNN (Dong et al. 2015), employs
CNNs to regress a complex non-linear mapping to recon-
struct the HR images and achieves superior performance.
This is the first attempt in the deep learning area. Subse-
quent approaches improve the quality of SR outputs by de-
veloping advanced learning strategies and neural architec-
tures. To enrich the knowledge of the SR model, the content-
based approaches develop transfer learning algorithms, de-
livering knowledge from pre-trained classification networks
to SR networks (Ledig et al. 2017; Johnson, Alahi, and Fei-
Fei 2016). As another way to learn informative features, a
growing number of approaches develop the attention mech-
anism (Fang et al. 2022) to attend to useful regions on LR
images (Zhang et al. 2018; Dai et al. 2019; Mei, Fan, and
Zhou 2021). Recent studies also show the Transformer with
a self-attention mechanism gains promising performance in
SISR (Chen et al. 2021; Liang et al. 2021).

Scene Text Image Super-Resolution
Unlike the SISR task, scene text image super-resolution
(STISR) is a more challenging task, which imposes require-
ments for understanding the text in images. The initial so-
lutions utilize prior statistical knowledge to guide the SR
process. In (Capel and Zisserman 2000), the maximum a
posterior (MAP) method is adopted to predict new pixels in
SR images. The Teager Filter (Mancas-Thillou and Mirme-
hdi 2005) employs the Taylor decomposition to highlight
high frequencies of the text. Recently, many works exploit
the properties of the scene text to improve SR networks.
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Figure 3: The overall architecture of our proposed Dual Prior Modulation Network (DPMN). It consists of two main modules:
Prior-Guided Refinement Modules (PGRMs) and Complementation Modulation Module (CMM). “Gen”, “Conv” and “CA”
denote Prior Generator, Convolutional Block, and Channel-wise Attention Block, respectively. The input of our DPMN is
provided by the Pre-trained STISR Network (PSN) with frozen parameters.

For example, TSRN (Wang et al. 2020) and PCAN (Zhao
et al. 2021) apply the CNN-BiLSTM module to perceive
sequential features of the scene text. The prior informa-
tion is also considered as essential auxiliary information for
the SR process. Specifically, TBSRN (Chen, Li, and Xue
2021) benefits from the supervision of character-level fea-
tures, which are developed by a pre-trained text recognizer.
The TG model (Chen et al. 2022) uses the local structure
prior, i.e., text strokes, to improve the quality of SR im-
ages. TPGSR (Ma, Guo, and Zhang 2021) and the following
TATT (Ma, Liang, and Zhang 2022) further show that pri-
ors with text semantic information are also beneficial for the
STISR task.

Although significant progress has been made, existing
methods suffer from the lack of constraints on global struc-
ture information and imprecise priors from the recognizer,
which may limit further performance improvements. In-
spired by this, our work proposes a dual-branch network to
produce superior SR images, benefiting from complemen-
tary priors.

Methodology
This section first provides a sketch of the proposed Dual
Prior Modulation Network (DPMN). Then we continue to
present a detailed description of two units in DPMN, i.e., the
Prior-Guided Refinement Module (PGRM) and the Comple-
mentation Modulation Module (CMM). We will also intro-
duce the training objective of the proposed network.

Overall Architecture
The overall architecture of the proposed DPMN is illustrated
in Figure 3. Our proposed DPMN is built on top of exist-
ing STISR networks. For any pre-trained STISR network,
denoted by PSN in Figure 3, it first receives LR images
ILR ∈ Rh×w×3 as input, and produces primary SR images
I0 = PSN(ILR) ∈ R2h×2w×3. Then the DPMN further re-
fines I0 using two branches of networks, with each consist-
ing of N Prior-Guided Refinement Modules (PGRMs). No-

tably, the two branches, called BG and BS , refine I0 guided
by the graphic semantic prior PG and the global structure
prior PS , respectively. For the i-th PGRM in branch BG,
a generator GeniG first generates a graphic semantic prior
P i
G, given the refined images Ii−1G from the previous PGRM

as input. Then both Ii−1G and P i
G are sent to the following

refinement modules to produce a newly refined image IiG.
In the same vein, the PGRM in branch BS has a similar
workflow using the global structure prior PS . Having the
refined images ING and INS in hand, the Complementation
Modulation Module (CMM) aggregates the two images and
produces a modulated one IM . Of note, the parameters of
the PSN are frozen while only the DPMN is optimized in
the training phase. In the inference phase, we employ a fu-
sion strategy to ensure the robustness of the final output, i.e.,
IOUT = α× IM + (1− α)× I0 for 0 < α < 1.

Prior-Guided Refinement Module
Two critical issues arise for the refinement process guided by
priors in the STISR task: (1) How to mitigate the influence
of imprecise prior information due to defective input (see
Figure 2). (2) How to integrate useful prior information, as
guidance, into images. Our Prior-Guided Refinement Mod-
ule (PGRM) is proposed to address those two issues. This is
achieved by calibrating the low-quality SR input by informa-
tion interaction of the input and the prior. Each PGRM (see
Figure 3) contains a prior generator, a Vision Transformer
(ViT) block, a convolutional block, and a pixel shuffle layer.

As shown in Figure 2, we can empirically find that the
global structure of the scene text and graphic semantics can
provide complementary guidance for the restoration of the
SR image. This motivates us to exploit two representative
image-level information as priors, i.e., the text mask and the
graphic recognition result.

To utilize these two priors, we propose to extract and
use the priors in a parallel manner, such that each branch
of PGRM processes a specific prior to the fullest. Different
from the feature map or the embedding vector (Ma, Guo, and



D
W

-
M

C
A

LN
LN

LN Le
FF

D
SW

-
M

C
A

LN
LN

LN Le
FF

Figure 4: The architecture of the Vision Transformer (ViT)
block in i-th PGRM of each branch. “DW-MCA” and
“DSW-MCA” are short for Dynamic Window Multi-head
Cross Attention and Dynamic Shifted Window Multi-head
Cross Attention. “LN” and “LeFF” denote Layer Normal-
ization and Locally-enhanced Feed-Forward Network.

Zhang 2021; Chen, Li, and Xue 2021), the prior in graphic-
recognition-guided branch BG (see Figure 3) can present the
semantic information of text images. This can avoid bring-
ing the noise, due to the domain gap, from the ambiguous se-
mantics to the input images. For the i-th PGRM in BG, a pre-
trained recognizer first produces a text result for the input
Ii−1G , and the following rendering module (Gupta, Vedaldi,
and Zisserman 2016) further transfers the text result to an
image-format data containing upper and lower case letters,
as the graphic prior, denoted by P i

G. This processing is for-
mulated as:

P i
G = Ren(Rec(Ii−1G )) ∈ R2h×2w×2. (1)

In the i-th PGRM unit of the global-structure-guided
branch BS , we utilize the text mask generated by the bi-
narization operation of Ii−1S as the structure prior P i

S . The
structure information, e.g., font, size, tendency, et al, can be
represented by P i

S . Its operation is given by:

P i
S = Bin(IiS) ∈ R2h×2w×1. (2)

Existing STISR approaches simply stack the Sequential
Residual Block (SRB) in the backbone network, to capture
and mine the sequence dependence of the text. However, the
SRB has difficulty to understand the deformable text due to
the rigid nature of the Bi-LSTM. Meanwhile, most prior-
based approaches manually fuse the prior information into
the input image via simple operations, e.g., addition. In our
work, we want the network to learn the fusion protocol adap-
tively, thereby improving the quality of the SR images.

We address this by interacting the information flow be-
tween the prior and the input image via the ViT. Before for-
mulating the information interaction, we first perform the
dimensionality matching operation. That is, since the di-
mensions of the input image are located in the space of
R2h×2w×3, we need to project the two priors (e.g., P i

G and
P i
S) to the same space. For P i

G ∈ R2h×2w×2, we use a con-
volutional layer to do the transformation, obtaining input
feature F i

PG
= Conv(P i

G) ∈ R2h×2w×3. For the global
structure prior P i

S , we expand it in the channel wise, as
F i
PS
∈ R2h×2w×3.

As shown in Figure 4, the ViT block in the i-th PGRM
of arbitrary branch is realized by the cross attention mecha-
nism (Zhou et al. 2020), which takes the prior F i

P (collective
term for F i

PG
and F i

PS
) as the query, and inputs low-quality

SR image Ii−1 (collective term for Ii−1G and Ii−1S ) as the
key and value, to perform the information interaction. Fol-
lowing the recent DW-ViT (Ren et al. 2022), we also process
the ViT block in two stages. In the first stage, a multi-head
cross attention layer (denoted by DW-MCA) with residual
connection receives the F i

P and Ii−1 as input, to produce
multi-scale correlation by three sizes of windows, given by:

F̃ i,1
V = DW-MCA(LN(F i

P ),LN(Ii−1)) + LN(Ii−1). (3)

Along with interacting the prior and the image with dy-
namic windows mechanism, we also enable the DW-ViT the
capacity to capture local contextual information for F i,1

V , re-
alized by:

F i,1
V = F̃ i,1

V + LeFF
(
LN
(
F̃ i,1
V

))
, (4)

where LeFF is the locally-enhanced feed-forward network
with spatial-wise and depth-wise convolutional layer pro-
posed in UFormer (Wang et al. 2022).

In the second stage, we replace the DW-MCA layer
with the dynamic shifted window multi-head cross atten-
tion (DSW-MCA) layer to build long-range interaction. This
stage can be formulated as:

F̃ i,2
V = DSW-MCA(LN(F i

P ),LN(F i,1
V ))+LN(F i,1

V ), (5)

F i,2
V = F̃ i,2

V + LeFF
(
LN
(
F̃ i,2
V

))
. (6)

Recent researches have proved that the ViT has its inter-
nal drawbacks, e.g., the limitation of encoding the induc-
tive bias, for vision tasks (Li et al. 2022). Thereby, a con-
volutional block (denoted by Conv), which consists of two
convolutional layers, is added after the ViT block. This de-
sign can improve the perception ability of locality and spa-
tial invariance (Peng et al. 2021) in PGRM. Subsequently,
the widely-used pixel shuffle layer (PS) (Shi et al. 2016)
produces the refined image, as:

Ii = PS(Conv(F i,2
V )). (7)

To optimize the proposed PGRM block efficiently, we
adopt two image-level losses. The pixel loss Lpix constrains
the information of image content, and the gradient profile
loss Lgp considers to minimize the information loss of edge
details (Wang et al. 2020). For the i-th PGRM module, the
loss function is given by:

Li
img = λp||IHR − Ii||2︸ ︷︷ ︸

Lpix

+ λg||∇IHR −∇Ii||1︸ ︷︷ ︸
Lgp

. (8)

Since each branch includes N PGRM blocks, the total
loss of each branch is:

LB =

N∑
i=1

Li
img. (9)

Complementation Modulation Module
After the enhancement to the quality of SR images in two
branches, we have two refined SR images, i.e., ING and INS .
A neural module is required to fuse and modulate those



two images to attain a superior SR one. As shown in Fig-
ure 3, this is realized by an encoder-decoder architecture.
Each encoder is composed of six convolutional layers to ex-
tract the key features, as FN

G = Encoder(ING ) and FN
S =

Encoder(INS ). Then we concatenate two feature maps, as:

FN
M = Concat(FN

G , F
N
S ). (10)

We then employ the channel attention mechanism (Hu,
Shen, and Sun 2018) to learn the modulation importance per
slice in FN

M and weight FN
M in channel-wise. A symmetric

decoder is further used to produce the final modulated SR
images. This is summarized as:

IM = Decoder(CA(FN
M )⊗ FN

M + FN
M ). (11)

In CMM, we use Limg to restrain IM by HR images IHR,
which can be described as follows:

LCMM = ||IHR − IM ||2 + ||∇IHR −∇IM ||1. (12)

Training Objective
In the training phase, we optimize the parameters of the pro-
posed DPMN. The objective loss includes two types of com-
ponents, i.e., the branch loss LB and the CMM loss LCMM .
The total loss function is:

LTotal = λCLCMM + λGLBG
+ λSLBS

. (13)

Experiments
In this section, we first introduce the experiment datasets,
evaluation metrics, and implementation details. Then we
conduct comparison experiments and ablation studies to
demonstrate the superiority of our method.

Evaluation Datasets and Metrics
The STISR benchmark TextZoom (Wang et al. 2020) is col-
lected in real-world scenarios. It consists of 17,367 LR-HR
image pairs for training and 4,373 pairs for testing. Wherein,
the test set is divided into three subsets to indicate different
levels of blurriness, i.e., easy (1,619 pairs), medium (1,411
pairs) and hard (1,343 pairs). The size of LR images is
16× 64, while the size of HR images is 32× 128.

We use the peak signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM) metrics to eval-
uate the quality of the SR images. In order to measure the
downstream task performance, we calculate the recognition
accuracy for the text recognition task. Following the com-
mon practice in (Wang et al. 2020), the recognition results
are evaluated on ASTER (Shi et al. 2018), CRNN (Shi, Bai,
and Yao 2016), MORAN (Luo, Jin, and Sun 2019) models.

Baselines and Implementation Details
We evaluate the proposed DPMN on five STISR mod-
els as baselines, including TSRN (Wang et al. 2020), TB-
SRN (Chen, Li, and Xue 2021), TPGSR (Ma, Guo, and
Zhang 2021), TG (Chen et al. 2022), and TATT (Ma, Liang,
and Zhang 2022). In our experiments, we directly use mod-
els from the official implementation or perform the identi-
cal hyper-parameters as reported in the official implementa-
tions to train the baseline models. Of note, to understand the

net improvement from the proposed DPMN, we respectively
select three models with the best performance on ASTER,
CRNN, and MORAN, as baselines of each aforementioned
STISR method. Then we fix the parameters of the SR mod-
els and only train the DPMNs.

We implement our model with PyTorch 1.10 deep learn-
ing library (Paszke et al. 2019) and all the experiments are
conducted on one RTX 3090 GPU. For each experiment, the
DPMN is trained 20 epochs using Adam optimizer (Kingma
and Ba 2014). The learning rate is set to 0.001, and the size
of the mini-batch is 48. We empirically observe that the loss
function is insensitive to the parameter λ, and we set all the
λ to 1. In the inference phase, the output fusion ratio α is
selected based on the pre-trained baselines. The size of orig-
inal SR results and modulated images is 32× 128. We apply
the pre-trained VisionLANs (Wang et al. 2021b) in PGRMs
as the text prior generators. In terms of the network archi-
tecture, the number of PGRMs in each branch, N , is set to
3. In the ViT block, the window numbers of the DW-MCA
and the DSW-MCA are 2, 4, and 8 with patch size 2, while
the head number of the MCA is set to 6. Additionally, we
exploit the adaptive dense-connection (Xie et al. 2019) and
the self-distillation mechanism (Zhang et al. 2019) to ensure
the stability of training and speed up the convergence rate.

Experimental Results
We conduct quantitative experiments on the benchmark
TextZoom. The comparison results are shown in Table 1 and
Table 2. We can clearly observe that our method boosts the
image quality and the recognition accuracy of existing base-
lines even if the data is derived from the best models ob-
tained on different text recognizers. Taking the latest TATT
as an example, our method achieves better recognition ac-
curacy and image quality simultaneously (improves aver-
age Accuracy/PSNR/SSIM by 0.32/0.28/0.01). Compelled
by the observations above, our proposed DPMN has the uni-
versal enhancement capability for existing STISR models
given the all-around improvement across all metrics.

Meanwhile, we provide some qualitative studies by com-
paring the visualization of the SR images between the base-
lines and our work. The results and comparisons shown in
Figure 5 reveal that: (1) Existing methods have defects w.r.t.
color reproduction and structure retention. In contrast, our
method can produce precise details, verifying the potential
of the complementary prior information. (2) The baseline
models are prone to generate artifacts, which degrade the im-
age quality and the performance of the downstream recogni-
tion task, while DPMN can avoid the artifacts due to explicit
guidance from the text structure information.

Ablation Study
In this section, we conduct ablation studies to investigate the
effectiveness of motivation and model components. All the
evaluations are validated on TextZoom. The default baseline
is TATT based on ASTER.

Effect of the Two Priors We first perform experiments to
demonstrate the necessity of complementary priors in the
SR process. This study has two settings, i.e., single-branch



Method ASTER CRNN MORAN
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

TSRN 73.32 56.20 39.17 57.31 54.73 41.25 32.24 43.47 67.88 49.96 37.08 52.64
+DPMN 74.43 56.41 39.24 57.81 54.91 41.46 32.46 43.68 68.07 50.18 37.16 52.80
TBSRN 76.71 59.53 43.71 61.03 59.79 45.07 34.18 47.18 70.17 55.63 40.80 56.46
+DPMN 76.78 60.52 44.08 61.49 59.79 45.22 34.40 47.29 70.54 55.63 40.95 56.64

TG 77.02 62.58 42.37 61.72 59.42 48.62 34.33 48.23 72.58 57.97 39.76 57.79
+DPMN 77.39 62.72 42.96 62.08 59.48 48.76 34.40 48.32 72.88 58.19 40.21 58.11
TPGSR 78.01 60.67 42.67 61.56 58.62 45.92 33.88 46.92 72.33 55.71 39.91 57.01
+DPMN 78.13 60.67 42.74 61.63 59.36 45.92 34.03 47.24 72.95 56.13 40.06 57.42

TATT 78.51 63.29 44.97 63.30 64.30 54.15 39.09 53.28 72.88 61.02 43.78 60.12
+DPMN 79.25 64.07 45.20 63.89 64.36 54.15 39.24 53.35 73.26 61.45 43.86 60.42

HR 93.39 86.96 75.65 85.87 76.41 75.05 64.56 72.33 89.01 83.13 71.11 81.62

Table 1: The recognition accuracy (%) on TextZoom. The bold numbers denote the better score between the baseline and
improved method by DPMN.

Method PSNR SSIM Accuracy
TSRN 20.81 0.7594 51.14

+DPMN 21.09 0.7698 51.43
TBSRN 20.91 0.7625 54.89
+DPMN 21.11 0.7650 55.14

TG 18.80 0.6597 55.91
+DPMN 20.56 0.7472 56.17
TPGSR 21.18 0.7615 55.16
+DPMN 21.33 0.7718 55.43

TATT 21.21 0.7825 58.90
+DPMN 21.49 0.7925 59.22

Table 2: The average image quality scores and average
recognition accuracy (%) on TextZoom.

Setting Prior PSNR SSIM Accuracy

SingleB
Mask 21.12 0.7864 63.50
GRR 19.59 0.7472 63.62

Mask+GRR 21.01 0.7859 63.67

DualB Mask&GRR 21.49 0.7925 63.89
Mask&GRR∗ 23.60 0.8875 77.57

Table 3: The performance of different priors. “SingleB”
denotes Single-Branch, “DualB” denotes Dual-Branch,
“GRR” denotes Graphic Recognition Results, “+” denotes
concatenate, and “∗” denotes the dual priors are from the
HR image.

and dual-branch. The results in Table 3 convince us that: (1)
The mask prior performs better in image quality, while the
graphic recognition result, including rich semantic features,
shows superior performance in the text recognition accuracy.
This justifies our motivation for modulating the two comple-
mentary priors. (2) The dual-branch setting outperforms the
single-branch one, clearly showing our design is reasonable
and superior. Specifically, we obtain the two priors from HR
images, which are impossible to be acquired in the natural
SR process, and evaluate the upper bound of the image qual-
ity enhancement. The stunning results again indicate that the
two priors play a promising role in modulation.

PSN DPMN Easy Medium Hard Average
(i) Frozen None 78.51 63.29 44.97 63.30
(ii) None Train 66.09 45.92 32.99 49.42
(iii) Fine-tune Train 79.18 63.08 44.38 63.30
(iv) Frozen Train 79.25 64.07 45.20 63.89

Table 4: The recognition accuracy (%) of different train-
ing strategies. “PSN” represents the Pre-trained STSIR Net-
work. “None” denotes not using this module. “Fine-tune”
denotes fine-turning based on a pre-trained model. “Frozen”
denotes freezing the parameters of the pre-trained model.

N Easy Medium Hard Average
1 78.81 64.07 45.12 63.71
2 78.69 63.78 45.12 63.57
4 78.57 64.00 45.12 63.60
5 78.63 63.86 45.20 63.60
3 79.25 64.07 45.20 63.89

Table 5: The recognition accuracy (%) of different PGRM
numbers in each branch.

Effect of the Training Strategy In this study, we inves-
tigate the training strategy of the proposed DPMN. Table 4
shows the results of possible training strategies. We can find
that training the DPMN, on top of the pre-trained PSN with
fixed parameters, achieves the best performance, showing
the flexibility and effectiveness of DPMN. Notably, apply-
ing DPMN independently (see (ii)) as an image SR back-
bone leads to trivial results. One conjecture may lie in that
the ambiguous priors from LR images struggle to provide
proper guidance for the SR process, thereby leading to prob-
lematic initialization and weak complementary information.

Number of PGRMs We implement the proposed DPMN
in a symmetric fashion, e.g., each branch containing three
PGRMs. In this study, we evaluate the effect of the num-
ber of PGRMs. The results are reported in Table 5. We can
empirically find that when N = 3, the proposed DPMN
achieves the overall best performance over three settings,
as well as the peak value of the average accuracy. We use
N = 3 as the default value for the experiments in this paper.
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Figure 5: The SR images with recognition results on TextZoom based on ASTER. The red characters mean wrong results.

Variant Easy Medium Hard Average

FW
2 78.69 63.78 45.20 63.59
4 78.81 63.57 45.12 63.55
8 79.06 63.64 45.05 63.64

DW (DPMN) 79.25 64.07 45.20 63.89

Table 6: The recognition accuracy (%) of different multi-
head cross attention layers. “FW” denotes Fixed Window,
whose size is set to the subsequent number. “DW” denotes
Dynamic Window.

CMM Easy Medium Hard Average
Encoder-decoder 78.88 63.43 45.20 63.55

U-Net 78.94 63.29 45.05 63.48
TSRN 78.75 63.08 45.05 63.34
DPMN 79.25 64.07 45.20 63.89

Table 7: The recognition accuracy (%) comparison between
different variants of CMM.

Effect of the Dynamic Window Mechanism In this part,
we study the dynamic window mechanism in the proposed
DPMN. The results in Table 6 show that: (1) The large win-
dow helps achieve better performance in the easy subset,
while the MCA with a small window performs admirably
in the hard subset. (2) Our method exhibits remarkable re-
sults in all subsets, which demonstrates the effectiveness of
the dynamic window mechanism. These observations verify
that the dynamic window can understand the images with
different blur levels, thereby enriching its learning capacity.

Design of the CMM We utilize the encoder-decoder ar-
chitecture with a channel-wise attention (CA) module to
fuse the two refined SR images. In this study, we empirically
compare it with three methods, i.e., single encoder-decoder
without CA mechanism, U-Net (Ronneberger, Fischer, and
Brox 2015) with skip connection, and TSRN (Wang et al.
2020) from previous STISR. Table 7 also shows that the ar-
chitecture of CMM in our work outperforms other vanilla
variants, again showing the superiority of our design.

Conclusion
In this paper, we propose a Dual Prior Modulation Network
(DPMN) to boost the performance of existing Scene Text
Image Super-Resolution (STISR) methods. We leverage the
global text structure and graphical semantics as complemen-
tary priors to guide the SR image refinement progressively
in dual branches. This is realized by the Prior-Guided Re-
finement Module (PGRM) and the Complementation Mod-
ulation Module (CMM). Substantial experiments and abla-
tion studies demonstrate the effectiveness of DPMN, which
improves both image quantity and the performance of the
downstream recognition task. We believe our work will
provide valuable intuition for further improvement of the
STISR task. Future work will focus on developing a more
efficient and effective backbone network for the STISR task.
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