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Abstract
Learning and generalizing from limited examples, i.e., few-
shot learning, is of core importance to many real-world vision
applications. A principal way of achieving few-shot learn-
ing is to realize an embedding where samples from different
classes are distinctive. Recent studies suggest that embedding
via hyperbolic geometry enjoys low distortion for hierarchi-
cal and structured data, making it suitable for few-shot learn-
ing. In this paper, we propose to learn a context-aware hy-
perbolic metric to characterize the distance between a point
and a set associated with a learned set to set distance. To this
end, we formulate the metric as a weighted sum on the tan-
gent bundle of the hyperbolic space and develop a mechanism
to obtain the weights adaptively, based on the constellation
of the points. This not only makes the metric local but also
dependent on the task in hand, meaning that the metric will
adapt depending on the samples that it compares. We empiri-
cally show that such metric yields robustness in the presence
of outliers and achieves a tangible improvement over base-
line models. This includes the state-of-the-art results on five
popular few-shot classification benchmarks, namely mini-
ImageNet, tiered-ImageNet, Caltech-UCSD Birds-200-2011
(CUB), CIFAR-FS, and FC100.

Introduction
In the modern context of machine learning, deep neural net-
works (DNNs) have enjoyed enormous success by leverag-
ing the rich availability of labeled data for supervised train-
ing. Despite this, deep supervised learning is primarily lim-
ited in terms of scaling towards unseen samples due to the
high cost of acquiring large amounts of labeled data. This
is in clear contrast to how humans learn, where in many
cases, only a handful of training examples are sufficient for
generalizing towards unseen samples. Few-Shot Learning
(FSL) addresses this critical problem through the develop-
ment of algorithms that can learn using limited data (Finn,
Abbeel, and Levine 2017; Nichol, Achiam, and Schulman
2018; Snell, Swersky, and Zemel 2017; Sung et al. 2018;
Vinyals et al. 2016; Ye et al. 2020; Hong et al. 2021; Wang
et al. 2020).

Performing FSL well is essential towards creating robust
frameworks that can learn with the efficiency of humans.

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: (a): For a query sample in “red” class, outliers
(i.e., yellow and white circles) drag the prototype (i.e., the
black circle) far away from the real cluster center in the
embedding space such that the nearest neighbor classifier
mis-classifies the query point into “green” class. (b): Our
method computes an adaptive point to set distance on the
manifold, which is more robust to outliers than prototypes.
Best viewed in color.

In many cases, FSL methods deem to learn an embedding
space to distinguish samples from different classes. Therein,
the embedding space is a multidimensional Euclidean space
and is realized via a deep neural network.

Employing hyperbolic geometry to encode data has been
shown rewarding, as the volume of space expands expo-
nentially (Ganea, Bécigneul, and Hofmann 2018; Khrulkov
et al. 2020). Recent works have shown that a hierarchical
structure exists within visual datasets and that the use of
hyperbolic embeddings can yield significant improvements
over Euclidean embeddings (Khrulkov et al. 2020; Fang,
Harandi, and Petersson 2021).

Most existing FSL solutions learn a metric through com-
paring the distance between a query sample and the class
prototypes, often modeled as the mean embeddings of each
class. However, this does not take the adverse effects of
outliers and noises into consideration (Sun et al. 2019).
This severely limits the representation power of embedding-
based methods since the outliers may drag the prototype
away from the true center of the cluster (see Fig.1(a)). For a
more robust approach, we require an adaptive metric, which
can faithfully capture the distribution per class, while being
robust to outliers and other nuances in data (Fig. 1(b)).

With this in mind, we propose learning a context-
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aware hyperbolic metric that characterizes the point to
set (dis)similarities. This is achieved through employing a
Poincaré ball to model hyperbolic spaces and casting the
(dis)similarity as a weighted-sum between a query and a
class that is learned adaptively. In doing so, each sample
(from the support and query sets) is modeled by a set itself
(i.e., a feature map). Therefore, we propose to make use of
pairwise distances between elements of two sets, along with
a refinement mechanism to disregard uninformative parts of
the feature maps. This leads to a flexible and robust frame-
work for the FSL tasks. We summarize our contributions as
follows:

• We propose a novel adaptive Poincaré point to set
(APP2S) distance metric for the FSL task.

• We further design a mechanism to produce a weight, de-
pendent on the constellation of the point, for our APP2S
metric.

• We conduct extensive experiments across five FSL
benchmarks to evaluate the effectiveness of the proposed
method.

• We further study the robustness of our method, which
shows our method is robust against the outliers compared
to competing baselines.

Preliminaries
In what follows, we use Rn and Rm×n to denote the n-
dimensional Euclidean space and space of m × n real ma-
trices, respectively. The n-dimensional hyperbolic space is
denoted by Hnc . The arctanh : (−1, 1)→ R, arctanh(x) =
1
2 ln( 1+x

1−x ), |x| < 1 refers to the inverse hyperbolic tangent
function. The vectors and matrices (or 3-D tensors) are de-
noted by bold lower-case letters and bold upper-case letters
throughout the paper.

Riemannian Geometry
In this section, we will give a brief recap of Riemannian
geometry. A manifold, denoted by M, is a curved surface,
which locally resembles the Euclidean space. The tangent
space at x ∈M is denoted by TxM. It contains all possible
vectors passing through point x tangentially. On the mani-
fold, the shortest path connecting two points is a geodesic,
and its length is used to measure the distances on the mani-
fold.

Hyperbolic Space
Hyperbolic spaces are Riemannian manifolds with constant
negative curvature and can be studied using the Poincaré ball
model (Ganea, Bécigneul, and Hofmann 2018; Khrulkov
et al. 2020). The Poincaré ball (Dnc , gc) is a smooth n-
dimensional manifold identified by satisfying Dnc = {x ∈
Rn : c‖x‖ < 1, c > 0}1, where c is the absolute value of
the curvature for a Poincaré ball, while the real curvature
value is −c. The Riemannian metric gc at x is defined as

1In the supplementary material, we provide further details re-
garding the Poincaré ball model and its properties.

gc = λcx
2gE , where gE is the Euclidean metric tensor and

λcx is the conformal factor, defined as:

λcx :=
2

1− c‖x‖2
. (1)

Since the hyperbolic space is a non-Euclidean space,
the rudimentary operations, such as vector addition, cannot
be applied (as they are not faithful to the geometry). The
Möbius gyrovector space provides many standard operations
for hyperbolic spaces. Essential to our developments in this
work is the Möbius addition of two points x,y ∈ Dnc , which
is calculated as:

x⊕cy =
(1 + 2c〈x,y〉+ c‖y‖2)x+ (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2
. (2)

The geodesic distance between two points x,y ∈ Dnc can be
obtained as:

dc(x,y) =
2√
c

arctanh(
√
c‖ − x⊕c y‖). (3)

Another essential operation used in our model is the hy-
perbolic averaging. The counterpart of Euclidean averaging
in hyperbolic space is the Einstein mid-point which has the
most simple form in Klein coordinates (another model of
the hyperbolic space which is isometric to the Poincaré ball).
Thus, we transform the points from Poincaré (i.e., xD) ball
model to Klein model (i.e., xK) using the transformation:

xK =
2xD

1 + c‖xD‖2
. (4)

Then, the hyperbolic averaging in Klein model is obtained
as:

HypAve(x1, . . . ,xN ) =
N∑
i=1

γixi/
N∑
i=1

γi, (5)

where γi = 1√
1−c‖xi‖2

are the Lorentz factors. Finally, we

transform the coordinates back to Poincaré model using:

xD =
xK

1 +
√

1− c‖xK‖2
. (6)

In our work, we make use of the tangent bundle of the Dnc .
The logarithm map defines a function from Dnc → TxDnc ,
which projects a point in the Poincaré ball onto the tangent
space at x, as:

πcx(y) =
2√
cλcx

arctanh(
√
c‖−x⊕cy‖)

−x⊕c y
‖ − x⊕c y‖

. (7)

Point to Set Distance
Let S = {s1, . . . , sk} be a set. The distance from a point
p to the set S can be defined in various forms. The min and
max distance from a point p to the set S are two simple
metrics, which can be defined as:

dl
p2s(p;S) = inf{d(p, si)|si ∈ S}, (8)

dh
p2s(p;S) = sup{d(p, si)|si ∈ S}, (9)

where inf and sup are the infimum and supremum functions,
respectively. Given their geometrical interpretation, dl

p2s and
dh

p2s define the lower and upper pairwise bounds, and fail to
encode structured information about the set. Therefore, we
opt for a weighted-sum formalism to measure the distance
between a point and a set in § .
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Method
This section will give an overview of the proposed method,
followed by a detailed description of each component in our
model.

Problem Formulation
We follow the standard protocol to formulate few-shot learn-
ing (FSL) with episodic training. An episode represents an
N -way K-shot classification problem (i.e., the training set,
named support set, includes N classes where each class has
K examples). As the name implies, K (i.e., the number of
examples per class) is small (e.g., K = 1 or 5). The goal
of learning is to realize a function F : X → Rn to embed
the support set to a latent and possibly lower-dimensional
space, such that query samples can be recognized easily us-
ing a nearest neighbour classifier. To be specific, an episode
or task Ei consists of a query set X q = {(Xq

i , y
q
i )|i =

1, . . . , N}, where Xq
i denotes a query example2 sampled

from class yqi , and a support set X s = {(Xs
ij , y

s
i )|i =

1, . . . , N, j = 1, . . . ,K}, where Xs
ij denotes the j-th sam-

ple in the class ysi . The embedding methods for FSL, our
solution being one, often formulate training as:

F∗ := arg min
F

∑
Xq

u∈X q

δ
(
F(Xq

u),F(X sv )
)

s.t. yqu = ysv,

(10)
where δ measures a form of distance between the query and
the support samples.

Model Overview
We begin by providing a sketch of our method (see the con-
ceptual diagram in Fig. 2(a) and Fig. 2(b)). The feature ex-
tractor network, denoted by F , maps the input to a hyper-
bolic space in our work. We model every class in the support
set by its signature. The signature is both class and episodic-
aware, meaning that the signature will vary if the samples of
a class or samples in the episode vary. This will enable us to
calculate an adaptive distance from the query point to every
support-class while being vigilant to the arrangement and
constellation of the support samples. We stress that our de-
sign is different from many prior works where class-specific
prototypes are learned for FSL. For example, in (Khrulkov
et al. 2020; Snell, Swersky, and Zemel 2017; Sung et al.
2018), the prototypes are class-specific but not necessarily
episodic-aware.

To obtain the signatures for each class in the support set,
we project the support samples onto the tangent space of the
query point and feed the resulting vectors to a signature gen-
erator fω . The signature generator realizes a permutation-
invariant function and refines and summarizes its inputs to
one signature per class. We then leverage a relational net-
work fφ to contrast samples of a class against their asso-
ciated signature and produce a relational score. To obtain
the adaptive P2S distance, we first compute a set to set

2Without losing generality, we use one sample per class as a
query for presenting our method. In practice, each episode contains
multiple samples for the query image per class.

(S2S) distance between the query feature map and each sup-
port feature map using the distance module fζ . Moreover,
a weighted-sum is calculated using the relational score act-
ing as the weight on the corresponding S2S distance, which
serves as the P2S distance.

Given P2S distances, our network is optimized by mini-
mizing the adaptive P2S distance between the query and its
corresponding set while ensuring that the P2S distance to
other classes (i.e., wrong classes) is maximized.

Adaptive Poincaré Point to Set Distance
In FSL, we are given a small support set of K images,
X si = {Xs

i1, . . . ,X
s
iK} per class ysi to learn a classifica-

tion model. We use a deep neural network to first encode the
input to a multi-channel feature map, as Si = F(X si ), with
Si = {Si1, . . . ,SiK |Sij ∈ RH×W×C}, where H , W , and
C indicate the height, width, and channel size of the instance
feature map. Each feature map consists of a set of patch de-
scriptors (local features), which can be further represented
as Sij = {s1

ij , . . . , s
HW
ij |srij ∈ RC}.

In our work, we train the network to embed the represen-
tation in the Poincaré ball; thus, we need to impose a con-
straint on patch descriptors at each spatial location srij as
follows:

srij =

{
srij if ‖srij‖ ≤ µ

µsrij/‖srij‖ if ‖srij‖ > µ,
(11)

where µ is the norm upper bound of the vectors in the
Poincaré ball. In our model, we choose µ = (1 − ε)/c,
where c is the curvature of the Poincaré ball and ε is a
small value that makes the system numerically stable. The
same operation applies to the query sample, thereby ob-
taining an instance feature map for the query sample Q =
{q1, . . . , qHW }, qr ∈ DCc . Then the P2S distance between
the query sample Q and the support set per class Si can be
calculated using Eq. (8) or Eq. (9). However, those two met-
rics only determine the lower or upper bound of P2S dis-
tance, thereby ignoring the structure and distribution of the
set to a great degree. To make better use of the distribution
of samples in a set, we propose the adaptive P2S distance
metric as:

dadp
p2s (Q;Si) :=

K∑
j=1

wijd(Q,Sij)

K∑
j=1

wij

, (12)

where wij is the adaptive factor for d(Q,Sij). We refer to
the distance in Eq. (12) as Adaptive Poincaré Point to Set
(APP2S) distance, hereafter.

In Eq. (12), we need to calculate the distance between
two feature maps (i.e., d(Q,Sij)). In doing so, we for-
mulate a feature map as a set (i.e., {q1, . . . , qHW } and
{s1
ij , . . . , s

HW
ij }), such that a set to set (S2S) distance can

be obtained. One-sided Hausdorff and two-sided Hausdorff
distances (Huttenlocher, Klanderman, and Rucklidge 1993)
are two widely used metrics to measure the distance be-
tween sets. However, these two metrics are sensitive to
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Figure 2: (a): The overall pipeline of our method. Given an episode, we use a backbone network to extract and map the inputs
to a hyperbolic space. We then project the support samples onto the tangent plane of the query point and employ a refinement
function fω to obtain the class and episode-aware signature of every class in the support set. This is followed by a mapping fφ
that weighs the importance of each sample of the support set w.r.t. their corresponding class. This enables us to calculate an
adaptive point to set distance towards inference. (b): The S2S distance module. We calculate a pair-wise distance between each
feature vector of the two feature maps as the input of the distance network fζ . Then the fζ outputs a S2S distance, which is
further used to compute the adaptive P2S.

outliers (Huttenlocher, Klanderman, and Rucklidge 1993;
Ibanez et al. 2008). To alleviate this issue, we propose to
learn the S2S distance by a network fζ . We first calculate
the pair-wise distance between two sets as D(Q,Sij) ∈
RHW×HW , where each element inD is obtained by dh,w =
dc(q

h, swij) using Eq. (3), where h = 1, . . . ,HW and w =
1, . . . ,HW . Then we use a neural network to further learn
the distance between two feature maps (see Fig. 2(b)), which
is given by:

ds2s(Q,Sij) := fζ(D). (13)
Comparing to the Hausdorff distance (Conci and Kubrusly
2018) (see supplementary material), our set to set distance is
more flexible and learned through the optimization process.

To further obtain the weights of APP2S (i.e., wij), we
make use of the tangent space of the query sample. We first
compute a mean query vector q̄ over the spatial dimensions
of the feature mapQ using Eq. (4)- Eq. (6). Then, we project
the samples in the support set to the tangent space of the
mean query vector (see Fig. 2(a)), using the logarithm map
as:

S̃ = πcq̄(S), (14)

where S̃ indicates the projected support set on the tangent
space at q̄. For the i-th class, we can obtain a set of fea-
ture maps: S̃i = {S̃i1, . . . , S̃iK}3. To obtain a meaningful
weight wij , we first propose a signature generator, which
jointly refines sample representations in the support set and
summarizes the set representation per class as the class sig-
nature. As shown in Fig. 2(a), the signature generator re-

3The projected feature map is also composed by the vectors at
each spatial location S̃ij = {s̃1

ij , . . . , s̃
HW
ij }

ceives the projected support set S̃ = {S̃1, . . . , S̃N} as in-
put and refines them for the follow-up task (i.e., obtaining
the weights for the APP2S). We denote the output of the
refinement module by Ŝ = fω(S̃) (Ŝ = {Ŝ1, . . . , ŜN},
Ŝi = {Ŝi1, . . . , ŜiK}). One can understand the refinement
function as learning the context of the support set by see-
ing all the samples, thereby highlighting the discriminative
samples and restraining the non-informative samples such as
outliers for all the samples. Then the signature for each class
is obtained by summarizing as: S̄i =

∑K
j=1 Ŝij/K.

Remark 1 Our proposed set-signature generator fω is sim-
ilar to the set-to-set function in FEAT (Ye et al. 2020), in the
sense that both functions perform self-attention over the in-
put features. However, the fundamental difference is that our
module exploits the relation between the spatial feature de-
scriptors of all samples in a support set (e.g., s̃rij), instead of
prototypes as proposed in FEAT (Ye et al. 2020), which pos-
sibly gives the model more flexibility to encode meaningful
features.

Given sample features in a class S̃i = {S̃i1, . . . , S̃iK}
and the corresponding class signature S̄i, we use a relation
generator (i.e., fφ in Fig. 2(a)) to compare the relationship
between an individual feature map and the class signature.
In doing so, we first concatenate the individual feature maps
and their class signature along the channel dimension to ob-
tain a hybrid representation, as:

Gij = CONCAT(S̃ij , S̄i). (15)

Given the hybrid representation Gij , the relation generator
produces a relation score as: wij = fφ(Gij). This score
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will serve as the adaptive factor for the APP2S distance
metric in Eq. (12). Note that the hybrid representation for
the whole support and a support-class set are denoted by
G = {G1, . . . ,GN} and Gi = {Gi1, . . . ,GiK}, respectively.
Algorithm 1 summarizes the process of training our APP2S
metric for FSL.

Remark 2 The point to set distance defined by Eq. (12)
is different from that in MatchingNet (Vinyals et al. 2016).
MatchingNet formulates all the samples in the support set
as a set. In contrast, we treat the samples in a class as the
set, which makes our adaptive point to set distance fully con-
textual aware of the whole support set (by the set-signature)
and encodes the distribution of each class.

average

concatenate

Figure 3: The information flow of the signature generator
and the relation generator. The signature generator fω re-
ceives the projected support set {S̃1, S̃2} as a bag and out-
puts the refined representation per sample such that each el-
ement (i.e., S̃ij) sees all the other elements of the support
set. Then the refined representations per class/set Ŝ1 and Ŝ2

are averaged to obtain the signature per class/set S̄1 and S̄2.
Finally, we concatenate one projected sample S̃1j and S̃2j

with the corresponding class signature S̄1 and S̄2, repec-
tively, and feed it into relation generator fφ to produce the
adaptive factors ω1j and ω2j .

Algorithm 1: Train network using adaptive Poincaré point
to set distance
Input: An episodes E , with their associated support set
X s = {(Xs

ij , y
s
i )|i = 1, . . . , N, j = 1, . . . ,K} and a query

sampleXq

Output: The optimal parameters for F , fω, fζ , and fφ
1: Map X s andXq into Poincaré ball
2: Obtain the tangent support set S̃ using Eq. (7)
3: Ŝ = fω(S̃) . the refined support set
4: for i in {1, ..., N} do
5: S̄i =

∑K
j=1 Ŝij/K . the set signature

6: Gij = CONCAT(S̃ij , S̄i)
. the hybrid representation

7: ωij = fφ(Gij) . the weight
8: Compute point to set distance and set to set distance

using Eq. (12) and Eq. (13)
9: end for

10: Optimize the model using Eq. (10)

Related Work
In this section, we discuss the literature on few-shot learn-
ing and highlight those that motivate this work. Gener-
ally, there are two main branches on the few-shot learn-
ing literature, optimization-based and metric-based meth-
ods. The optimization-based methods (Antoniou, Edwards,
and Storkey 2019; Chen et al. 2019; Finn, Abbeel, and
Levine 2017; Flennerhag et al. 2019; Franceschi et al. 2018;
Nichol, Achiam, and Schulman 2018), such as MAML and
Reptile (Finn, Abbeel, and Levine 2017; Nichol, Achiam,
and Schulman 2018), aim to learn a set of initial model pa-
rameters that can adapt to new tasks quickly using backprop-
agation in the episodic regime, without severe overfitting.
However, this group of methods usually adopt a bi-level op-
timization setting to optimize the initial parameters, which
is computationally expensive during inference.

On the other hand, our proposed method is closer to
metric-based methods (Simon et al. 2020; Snell, Swersky,
and Zemel 2017; Sung et al. 2018; Vinyals et al. 2016; Ye
et al. 2020; Zhang et al. 2020; Tang et al. 2020; Ma et al.
2021), which target to realize an embedding: RM → RD
to represent images in semantic space equipped with an ap-
propriate distance metric such that different categories are
distinctive. Matching Network (Vinyals et al. 2016) deter-
mines the query labels by learning a sample-wise distance
along with a self-attention mechanism that produces a fully
contextualized embedding over samples. Prototypical Net-
work (Snell, Swersky, and Zemel 2017) takes a step further
from a sample-wise to a class-wise metric, where all the
samples of a class are averaged into a prototype to represent
the class in the embedding space. Relation Network (Sung
et al. 2018) and CTM (Li et al. 2019a) replace the hand-
crafted metric with a network to encode the non-linear re-
lation between the class representations and the query em-
bedding. Ye et al. (Ye et al. 2020) propose adopting a trans-
former to learn the task-specific features for few-shot learn-
ing. Zhang et al. (Zhang et al. 2020) adopt the Earth Mover’s
Distance as a metric to compute a structural distance be-
tween representation to obtain the labels for the query im-
ages. Simon et al. (Simon et al. 2020) propose to generate
a dynamic classifier via using subspace. Along this line of
research, most of the previous methods utilize the global
feature vectors as representations. However, several recent
works have demonstrated that utilizing the local feature
maps can further boost performance. Therefore, we follow
these works (Doersch, Gupta, and Zisserman 2020; Zhang
et al. 2020; Wertheimer, Tang, and Hariharan 2021; Lifchitz
et al. 2019; Li et al. 2019b) to develop our model.

However, the majority of the aforementioned metric-
based works employ various metrics within Euclidean space.
Ganea et al. (Ganea, Bécigneul, and Hofmann 2018) have
proved that embedding via hyperbolic geometry enjoys low
distortion for hierarchical and structured data (e.g., trees)
and developed the hyperbolic version of the feed-forward
neural networks and recurrent neural networks (RNN).
Moreover, a recent work (Khrulkov et al. 2020) has shown
that the vision tasks can largely benefit from hyperbolic em-
beddings, which inspires us to further develop algorithms
with hyperbolic geometry.
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Experiments
Datasets
In this section, we will empirically evaluate our approach
across five standard benchmarks, i.e., mini-ImageNet (Ravi
and Larochelle 2016), tiered-ImageNet (Ren et al. 2018),
Caltech-UCSD Birds-200-2011 (CUB) (Wah et al. 2011),
CIFAR-FS (Bertinetto et al. 2018) and Fewshot-CIFAR100
(FC100) (Oreshkin, López, and Lacoste 2018). Full details
of the datasets and implementation are described in the sup-
plementary material. In the following, we will briefly de-
scribe our results on each dataset.

Main Result
We evaluate our methods for 100 epochs, and in each epoch,
we sample 100 tasks (episodes) randomly from the test set,
for both 5-way 1-shot and 5-way 5-shot settings. Follow-
ing the standard protocol (Simon et al. 2020), we report the
mean accuracy with 95% confidence interval.
mini-ImageNet. As shown in Table 1, we evaluate our
model using ResNet-12 and ResNet-18 as the backbones on
mini-ImageNet. Between them, ResNet-12 produces the best
results. In addition, our model also outperforms recent state-
of-the-art models in most of the cases. Interestingly, our
model further outperforms hyperbolic ProtoNet by 7.77%
and 7.11% for 5-way 1-shot and 5-way 5-shot with ResNet-
18, respectively. With ResNet-12, we outperform the hyper-
bolic ProtoNet by 5.60% and 7.29% for 5-way 1-shot and
5-way 5-shot, respectively.
tiered-ImageNet. We further evaluate our model on tiered-
ImageNet with ResNet backbones. The results in Table 1
indicate that with ResNet-12, our model outperforms the hy-
perbolic ProtoNet by 4.62% and 7.12% for 5-way 1-shot and
5-way 5-shot, respectively, and achieves state-of-the-art re-
sults for inductive few-shot learning.
CIFAR-FS and FC100. As the results in Table 2 sug-
gested, our model also achieves comparable performance
with the relevant state-of-the-state methods on this dataset,
with ResNet-12 backbone, which vividly shows the superi-
ority of our method.
CUB. We use ResNet-18 as our backbone to evaluate
our method on the CUB dataset. Table 3 shows that our
model improves the performance over baseline by 3.94%
and 4.88% for 5-way 1-shot and 5-way 5-shot settings,
respectively. Besides, our model achieves 77.64% and
90.43% for 5-way 1-shot and 5-way 5-shot settings on
this dataset, which outperforms state-of-the-art models (i.e.,
DeepEMD (Zhang et al. 2020) and P-transfer (Shen et al.
2021)) and achieve competitive performance on this dataset.

Robustness to Outliers
To further validate the robustness of our method, we con-
duct experiments in the presence of outliers in the form of
mislabelled images. In the first study, we add a various num-
ber of outliers (e.g., 1, 2, 3, 4), whose classes are disjoint to
the support-class, to each class of the support set. We per-
formed this study with ResNet-12 backbone on the 5-way
5-shot setting on tiered-ImageNet. Fig. 4(a) shows that the
performances of hyperbolic ProtoNet degrade remarkably.

On the contrary, both our APP2S and Euclidean AP2S are
robust to outliers, which shows the superiority of our adap-
tive metric. Comparing to Euclidean AP2S, APP2S is even
more robust (see the slope of Fig. 4(a)) and performs consis-
tently even in the presence of 20 outliers. This suggests that
integrating our proposed adaptive metric and hyperbolic ge-
ometry can further bring robustness to our framework. In
the second study (shown in Fig. 4(b)), we conduct the same
experiments on mini-ImageNet. The results show a similar
trend as the previous one, which further proves the effec-
tiveness of our proposed method.
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Figure 4: Robustness analysis. Horizontal axis: The number
of outliers. Vertical axis: Accuracy. (a): The performance vs.
the number of outliers on tiered-ImageNet. (b): The perfor-
mance vs. the number of outliers on mini-ImageNet.

Ablation Study
We further conduct the ablation study to verify the effec-
tiveness of each component in our method on the tiered-
ImageNet dataset using the ResNet-12 backbone.
Experiments Set-Up. For setting (ii) in Table 4, we disable
the relation module fφ and signature generator fω . The P2S
distance can be obtained by Eq. (12) and Eq. (13) with equal
weights (i.e., 1). Moreover, we enable the relation generator
fφ but not the signature generator in setting (iii). We use the
class prototype instead of the signature for this experiment.
We enable both fφ and fω and use the Euclidean distances
for setting (iv). In the end, we enable the Poincaré ball but
disable the fζ for setting (v). In terms of implementation
of (v), the backbone is designed to output a feature vector
instead of a feature map, such that the P2S distance can be
directly computed by Eq. (3) and Eq. (12).
Effectiveness of Point to Set Distance. In this experiment,
we first evaluate the effectiveness of the P2S distance by
comparing to its point to point (P2P) distance counterpart
(i.e., hyperbolic ProtoNet). From Table 4, we could observe
that the P2S distance can learn a more discriminative em-
bedding space than P2P distance (i.e., (i) vs. (ii)), and the
adaptive P2S can further bring performance gain to our ap-
plication (i.e., (ii) vs. (iii)). This observation shows the po-
tential of our P2S distance setting in the FSL task.
Effectiveness of Signature Generator. We further evaluate
another essential component in our work, i.e., the signature
generator, which refines the entire support set and produces
a signature per class. As shown in Table 4 (i.e., (iii) and (vi)),
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Model Backbone mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

ProtoNet (Snell, Swersky, and Zemel 2017) ResNet-12 60.37± 0.83 78.02± 0.57 61.74± 0.77 80.00± 0.55
MatchingNet (Vinyals et al. 2016) ResNet-12 63.08± 0.80 75.99± 0.60 68.50± 0.92 80.60± 0.71
MetaOptNet (Lee et al. 2019) ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
DeepEMD (Zhang et al. 2020) ResNet-12 65.91± 0.82 82.41± 0.56 71.16± 0.87 86.03± 0.58
P-transfer (Shen et al. 2021) ResNet-12 64.21± 0.77 80.38± 0.59 - -
GLoFA (Lu, Ye, and Zhan 2021) ResNet-12 66.12± 0.42 81.37± 0.33 69.75± 0.33 83.58± 0.42
DMF (Xu et al. 2021) ResNet-12 67.76 ± 0.46 82.71± 0.31 71.89± 0.52 85.96± 0.35
Hyperbolic ProtoNet (Khrulkov et al. 2020) ResNet-12 ∗60.65± 0.18 ∗76.13± 0.21 ∗67.38± 0.14 ∗79.11± 0.22
Ours (APP2S) ResNet-12 66.25± 0.20 83.42 ± 0.15 72.00± 0.22 86.23 ± 0.15
LwoF (Gidaris and Komodakis 2018) WRN-28-10 60.06± 0.14 76.39± 0.11 - -
wDAE-GNN (Gidaris and Komodakis 2019) WRN-28-10 61.07± 0.15 76.75± 0.11 68.18± 0.16 83.09± 0.12
LEO (Rusu et al. 2018) WRN-28-10 61.76± 0.08 77.59± 0.12 66.33± 0.05 82.06± 0.08
Su et al. (Su, Maji, and Hariharan 2020) ResNet-18 - 76.60± 0.70 - 78.90± 0.70
AFHN (Li et al. 2020) ResNet-18 62.38± 0.72 78.16± 0.56 - -
Neg-Cosine (Liu et al. 2020) ResNet-18 62.33± 0.82 80.94± 0.59 - -
Hyperbolic ProtoNet (Khrulkov et al. 2020) ResNet-18 ∗57.05± 0.16 ∗74.20± 0.14 ∗66.20± 0.12 ∗76.50± 0.13
Ours (APP2S) ResNet-18 64.82± 0.12 81.31± 0.22 70.83± 0.15 84.15± 0.29

Table 1: Few-shot classification accuracy and 95 % confidence interval on mini-ImageNet and tiered-ImageNet with ResNet
backbones. “*” notes the result obtained by the self-implemented network.

Model Backbone CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot

TEAM (Qiao et al. 2019) ResNet-12 70.40 81.30 - -
ProtoNet (Snell, Swersky, and Zemel 2017) ResNet-12 72.20± 0.70 83.50± 0.50 37.50± 0.60 52.50± 0.60
TADAM (Oreshkin, López, and Lacoste 2018) ResNet-12 - - 40.10± 0.40 56.10± 0.40
DeepEMD (Zhang et al. 2020) ResNet-12 - - 46.47± 0.78 63.22± 71
Hyperbolic ProtoNet (Khrulkov et al. 2020) ResNet-12 *70.27± 0.22 *80.98± 0.16 *36.04± 0.18 *51.60± 0.18
Ours (APP2S) ResNet-12 73.12 ± 0.22 85.69 ± 0.16 47.64 ± 0.21 63.56 ± 0.22

Table 2: Few-shot classification accuracy and 95 % confidence interval on CIFAR-FS and FC100 with ResNet-12 backbones.
“*” notes the result obtained by the self-implemented network.

Model 1-shot 5-shot
MatchingNet 72.36± 0.90 83.64± 0.60
ProtoNet 71.88± 0.91 87.42± 0.48
DeepEMD ♣ 76.65± 0.83 88.69± 0.50
P-transfer ♣ 73.88± 0.87 87.81± 0.48
Hyperbolic ProtoNet ∗73.70± 0.22 ∗85.55± 0.13
Ours (APP2S) 77.64 ± 0.19 90.43 ± 0.18

Table 3: Few-shot classification accuracy and 95 % confi-
dence interval on CUB. “*” notes the result obtained by the
self-implemented network. “♣” denotes the method using
ResNet-12 as the backbone, otherwise ResNet-18.

we could observe that our method benefits from the signa-
ture generator, which shows that the signature of each class
could help to generate an informative weight for individual
feature map within the same class.
Effectiveness of Hyperbolic Geometry. We also imple-
ment our model in the Euclidean space to verify the effec-
tiveness of our method. The row (iv) and (vi) in Table 4
vividly show that the representation in the Poincaré ball has
a richer embedding than that in Euclidean spaces.
Effectiveness of Set to Set Distance. The comparison be-

tween (v) and (vi) shows that our set to set distance generator
associated with the feature map outputs richer information
than using a feature vector to directly compute the APP2S.

ID Model 5-shot
(i) Hyperbolic ProtoNet 79.11± 0.22
(ii) Hyperbolic P2S w/o fφ 83.14± 0.17
(iii) Hyperbolic P2S w/ fφ 84.88± 0.17
(iv) Euclidean AP2S 81.96± 0.18
(v) APP2S w/o fζ 84.12± 0.13
(vi) APP2S 86.23 ± 0.15

Table 4: The ablation study of our model, we start from the
hyperbolic ProtoNet (Khrulkov et al. 2020) towards APP2S.

Conclusion
In this paper, we propose a novel adaptive Poincaré point to
set (APP2S) distance metric for the few-shot learning, which
can adapt depending on the samples at hands. Empirically,
we showed that this approach is expressive with both hyper-
bolic geometry and Euclidean counterpart. Our model im-
proves the performances over baseline models and achieves
competing results on five standard FSL benchmarks.

1932



References
Antoniou, A.; Edwards, H.; and Storkey, A. 2019. How to
train your MAML. In International Conference on Learning
Representations.
Bertinetto, L.; Henriques, J. F.; Torr, P.; and Vedaldi,
A. 2018. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations.
Chen, W.-Y.; Liu, Y.-C.; Kira, Z.; Wang, Y.-C. F.; and
Huang, J.-B. 2019. A Closer Look at Few-shot Classifica-
tion. In International Conference on Learning Representa-
tions.
Conci, A.; and Kubrusly, C. S. 2018. Distance Between Sets
- A survey. Advances in Mathematical Sciences and Appli-
cations.
Doersch, C.; Gupta, A.; and Zisserman, A. 2020. Crosstrans-
formers: spatially-aware few-shot transfer. arXiv preprint
arXiv:2007.11498.
Fang, P.; Harandi, M.; and Petersson, L. 2021. Kernel Meth-
ods in Hyperbolic Spaces. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, 1126–1135.
Flennerhag, S.; Rusu, A. A.; Pascanu, R.; Visin, F.; Yin, H.;
and Hadsell, R. 2019. Meta-Learning with Warped Gradient
Descent. In International Conference on Learning Repre-
sentations.
Franceschi, L.; Frasconi, P.; Salzo, S.; Grazzi, R.; and Pon-
til, M. 2018. Bilevel programming for hyperparameter opti-
mization and meta-learning. In International Conference on
Machine Learning, 1568–1577. PMLR.
Ganea, O.; Bécigneul, G.; and Hofmann, T. 2018. Hyper-
bolic neural networks. In Advances in Neural Information
Processing Systems.
Gidaris, S.; and Komodakis, N. 2018. Dynamic few-shot
visual learning without forgetting. In IEEE Conference on
Computer Vision and Pattern Recognition.
Gidaris, S.; and Komodakis, N. 2019. Generating classifica-
tion weights with gnn denoising autoencoders for few-shot
learning. In IEEE Conference on Computer Vision and Pat-
tern Recognition.
Hong, J.; Fang, P.; Li, W.; Zhang, T.; Simon, C.; Harandi,
M.; and Petersson, L. 2021. Reinforced Attention for Few-
Shot Learning and Beyond. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Huttenlocher, D. P.; Klanderman, G. A.; and Rucklidge,
W. J. 1993. Comparing images using the Hausdorff distance.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Ibanez, L.; Audette, M.; Yeo, B.; Golland, P.; Tustison, N.;
and Gee, J. 2008. The Use of Robust Local Hausdorff
Distances in Accuracy Assessment for Image Alignment of
Brain MRI. Insight Journal.

Khrulkov, V.; Mirvakhabova, L.; Ustinova, E.; Oseledets, I.;
and Lempitsky, V. 2020. Hyperbolic image embeddings.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.
Lee, K.; Maji, S.; Ravichandran, A.; and Soatto, S. 2019.
Meta-learning with differentiable convex optimization. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion.
Li, H.; Eigen, D.; Dodge, S.; Zeiler, M.; and Wang, X.
2019a. Finding task-relevant features for few-shot learning
by category traversal. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.
Li, K.; Zhang, Y.; Li, K.; and Fu, Y. 2020. Adversar-
ial Feature Hallucination Networks for Few-Shot Learning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition.
Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; and Luo, J. 2019b.
Revisiting local descriptor based image-to-class measure for
few-shot learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 7260–
7268.
Lifchitz, Y.; Avrithis, Y.; Picard, S.; and Bursuc, A. 2019.
Dense classification and implanting for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 9258–9267.
Liu, B.; Cao, Y.; Lin, Y.; Li, Q.; Zhang, Z.; Long, M.; and
Hu, H. 2020. Negative margin matters: Understanding mar-
gin in few-shot classification. In European Conference on
Computer Vision, 438–455. Springer.
Lu, S.; Ye, H.-J.; and Zhan, D.-C. 2021. Tailoring Embed-
ding Function to Heterogeneous Few-Shot Tasks by Global
and Local Feature Adaptors. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 8776–
8783.
Ma, R.; Fang, P.; Avraham, G.; Zuo, Y.; Drummond, T.;
and Harandi, M. 2021. Learning Instance and Task-Aware
Dynamic Kernels for Few Shot Learning. arXiv preprint
arXiv:2112.03494.
Nichol, A.; Achiam, J.; and Schulman, J. 2018. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999.
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